
Lars 1.0 Documentation
Release 1.0

Dave Jones

May 09, 2020

Contents

1 Install 1
1.1 Pre-requisites . 1
1.2 Ubuntu Linux . 1
1.3 Other Platforms . 1

2 Introduction 3
2.1 Filtering rows . 3
2.2 Manipulating row content . 5

3 API Reference 7
3.1 lars.apache - Reading Apache Logs . 7
3.2 lars.iis - Reading IIS Logs . 10
3.3 lars.csv - Writing CSV Files . 12
3.4 lars.sql - Direct Database Output . 13
3.5 lars.geoip - GeoIP Database Access . 17
3.6 lars.datatypes - Web Log Datatypes . 19
3.7 lars.progress - Rendering Progress . 36
3.8 lars.dns - DNS Resolution . 38
3.9 lars.cache - Cache Decorators . 38
3.10 lars.exc - Base Exceptions . 39

4 Change log 41
4.1 Release 1.0 (2017-01-04) . 41
4.2 Release 0.3 (2014-09-07) . 41
4.3 Release 0.2 (2013-07-28) . 41
4.4 Release 0.1 (2013-06-09) . 41

5 License 43
5.1 DateTime, Date, and Time documentation license . 43
5.2 _strptime license . 44
5.3 IPNetwork & IPAddress documentation license . 45

Python Module Index 47

Index 49

i

ii

CHAPTER 1

Install

lars is distributed in several formats. The following sections detail installation on a variety of platforms.

1.1 Pre-requisites

Where possible, installation methods will automatically handle all mandatory pre-requisites. However, if your
particular installation method does not handle dependency installation, then you will need to install the following
Python packages manually:

• pygeoip1 - The pure Python API for MaxMind GeoIP databases

• ipaddress2 - Google’s IPv4 and IPv6 address handling library. This is included as standard in Python 3.3
and above.

1.2 Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the Waveform PPA3 as follows (this also ensures you are kept up
to date as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-lars

1.3 Other Platforms

If your platform is not covered by one of the sections above, lars is available from PyPI and can therefore be
installed with the Python setuptools easy_install tool:

$ easy_install lars

1 https://pypi.python.org/pypi/pygeoip/
2 https://pypi.python.org/pypi/ipaddress/
3 https://launchpad.net/~waveform/+archive/ppa

1

https://pypi.python.org/pypi/pygeoip/
https://pypi.python.org/pypi/ipaddress/
https://launchpad.net/~waveform/+archive/ppa

Lars 1.0 Documentation, Release 1.0

Or the (now deprecated) distribute pip tool:

$ pip install lars

If you do not have either of these tools available, please install the Python setuptools4 package first.

4 https://pypi.python.org/pypi/setuptools/

2 Chapter 1. Install

https://pypi.python.org/pypi/setuptools/

CHAPTER 2

Introduction

A typical lars script opens some log source, typically a file, and uses the source and target wrappers provided by
lars to convert the log entries into some other format (potentially filtering and/or modifying the entries along the
way). A trivial script to convert IIS W3C style log entries into a CSV file is shown below:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

target.write(row)

Going through this section by section we can see the following:

1. The first couple of lines import the necessary modules that we’ll need; the standard Python io5 module for
opening files, and the iis and csv6 modules from lars for converting the data.

2. Using io.open()7 we open the input file (with mode 'r' for reading) and the output file (with mode
'wb' for creating a new file and writing (binary mode) to it)

3. We wrap infile (the input file) with IISSource (page 10) to parse the input file, and outfile (the
output file) with CSVTarget (page 12) to format the output file.

4. Finally, we use a simple loop to iterate over the rows in the source file, and the write() (page 12) method
to write them to the target.

This is the basic structure of most lars scripts. Most extra lines for filtering and manipulating rows appear within
the loop at the end of the file, although sometimes extra module configuration lines are required at the top.

2.1 Filtering rows

The row object declared in the loop has attributes named after the columns of the source (with characters that
cannot appear in Python identifiers replaced with underscores). To see the structure of a row you can simply print
one and then terminate the loop:

5 https://docs.python.org/3.5/library/io.html#module-io
6 https://docs.python.org/3.5/library/csv.html#module-csv
7 https://docs.python.org/3.5/library/io.html#io.open

3

https://docs.python.org/3.5/library/io.html#module-io
https://docs.python.org/3.5/library/csv.html#module-csv
https://docs.python.org/3.5/library/io.html#io.open

Lars 1.0 Documentation, Release 1.0

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

print(row)
break

Given the following input file (long lines indented for readability):

#Software: Microsoft Internet Information Services 6.0
#Version: 1.0
#Date: 2002-05-24 20:18:01
#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem

cs-uri-query sc-status sc-bytes cs-bytes time-taken cs(User-Agent)
cs(Referrer)

2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm -
200 7930 248 31
Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server)
http://64.224.24.114/

This will produce this output on the command line:

Row(date=Date(2002, 5, 24), time=Time(20, 18, 1),
c_ip=IPv4Address(u'172.224.24.114'), cs_username=None,
s_ip=IPv4Address(u'206.73.118.24'), s_port=80, cs_method=u'GET',
cs_uri_stem=Url(scheme='', netloc='', path=u'/Default.htm', params='',
query_str='', fragment=''), cs_uri_query=None, sc_status=200,
sc_bytes=7930, cs_bytes=248, time_taken=31.0,
cs_User_Agent=u'Mozilla/4.0 (compatible; MSIE 5.01; Windows 2000
Server)', cs_Referrer=Url(scheme=u'http', netloc=u'64.224.24.114',
path=u'/', params='', query_str='', fragment=''))

From this one can see that field names like c-ip have been converted into c_ip (- is an illegal character
in Python identifiers). Furthermore it is apparent that instead of simple strings being extracted, the data has
been converted into a variety of appropriate datatypes (Date (page 23) for the date field, Url (page 33) for
the cs-uri-stem field, and so on). This significantly aids in filtering rows based upon sub-attributes of the
extracted data.

For example, to filter on the year of the date:

if row.date.year == 2002:
target.write(row)

Alternatively, you could filter on whether or not the client IP belongs in a particular network:

if row.c_ip in datatypes.network('172.0.0.0/8'):
target.write(row)

Or use Python’s string methods8 to filter on any string:

if row.cs_User_Agent.startswith('Mozilla/'):
target.write(row)

Or any combination of the above:

if row.date.year == 2002 and 'MSIE' in row.cs_User_Agent:
target.write(row)

8 http://docs.python.org/2/library/stdtypes.html#string-methods

4 Chapter 2. Introduction

http://docs.python.org/2/library/stdtypes.html#string-methods

Lars 1.0 Documentation, Release 1.0

2.2 Manipulating row content

If you wish to modify the output structure,the simplest method is to declare the row structure you want at the top
of the file (using the row() (page 35) function) and then construct rows with the new structure in the loop (using
the result of the function):

import io
from lars import datatypes, iis, csv

NewRow = datatypes.row('date', 'time', 'client', 'url')

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

new_row = NewRow(row.date, row.time, row.c_ip, row.cs_uri_stem)
target.write(new_row)

There is no need to convert column data back to strings for output; all datatypes produced by lars source adapters
have built-in string conversions which all target adapters know to use.

2.2. Manipulating row content 5

Lars 1.0 Documentation, Release 1.0

6 Chapter 2. Introduction

CHAPTER 3

API Reference

The framework is designed in a modular fashion with a separate module for each log input format, each data
output format, a few auxilliary modules for the datatypes exposed by the framework and their functionality. Where
possible, standards dictating formats are linked in the API reference.

Each module comes with documentation including examples of usage. The best way to learn the framework is to
peruse the API reference and try out the examples, modifying them to suit your purposes.

3.1 lars.apache - Reading Apache Logs

This module provides a wrapper for Apache log files, typically in common or combined format (but technically
any Apache format which can be unambiguously parsed with regexes).

The ApacheSource (page 7) class is the major element that this module exports; this is the class which wraps
a file-like object containing a common, combined, or otherwise Apache formatted log file and yields rows from it
as tuples.

3.1.1 Classes

class lars.apache.ApacheSource(source, log_format=COMMON)
Wraps a stream containing a Apache formatted log file.

This wrapper converts a stream containing an Apache log file into an iterable which yields tuples. Each tuple
has fieldnames derived from the following mapping of Apache format strings (which occur in the optional
log_format parameter):

Format String Field Name
%a remote_ip
%A local_ip
%B size
%b size
%{Foobar}C cookie_Foobar (1)
%D time_taken_ms
%{FOOBAR}e env_FOOBAR (1)
%f filename

Continued on next page

7

Lars 1.0 Documentation, Release 1.0

Table 1 – continued from previous page
Format String Field Name
%h remote_host
%H protocol
%{Foobar}i req_Foobar (1)
%k keepalive
%l ident
%m method
%{Foobar}n note_Foobar (1)
%{Foobar}o resp_Foobar (1)
%p port
%{canonical}p port
%{local}p local_port
%{remote}p remote_port
%P pid
%{pid}P pid
%{tid}P tid
%{hextid}P hextid
%q url_query
%r request
%R handler
%s status
%t time
%{format}t time
%T time_taken
%u remote_user
%U url_stem
%v server_name
%V canonical_name
%X connection_status
%I bytes_received
%O bytes_sent

Notes:

(1) Any characters in the field-name which are invalid in a Python identifier are converted to underscore,
e.g. %{foo-bar}C becomes "cookie_foo_bar".

Warning: The wrapper will only operate on log_format specifications that can be unambiguously
parsed with a regular expression. In particular, this means that if a field can contain whitespace it must
be surrounded by characters that it cannot legitimately contain (or cannot contain unescaped versions
of). Typically double-quotes are used as Apache (from version 2.0.46) escapes double-quotes within
%r, %i, and %o. See Apache’s Custom Log Formats9 documentation for full details.

Parameters

• source – A file-like object containing the source stream

• format (str10) – Defaults to COMMON (page 9) but can be set to any valid Apache
LogFormat string

source
The file-like object that the source reads rows from

9 http://httpd.apache.org/docs/2.2/mod/mod_log_config.html#formats
10 https://docs.python.org/3.5/library/stdtypes.html#str

8 Chapter 3. API Reference

http://httpd.apache.org/docs/2.2/mod/mod_log_config.html#formats
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

count
Returns the number of rows successfully read from the source

log_format
The Apache LogFormat string that the class will use to decode rows

close()
Close the source; attempting to read further rows is not permitted after this method is called.

3.1.2 Data

lars.apache.COMMON
This string contains the Apache LogFormat string for the common log format (sometimes called the CLF).
This is the default format for the ApacheSource (page 7) class.

lars.apache.COMMON_VHOST
This string contains the Apache LogFormat strnig for the common log format with an additional virtual-host
specification at the beginning of the string. This is a typical configuration used by several distributions of
Apache which are configured with virtualhosts by default.

lars.apache.COMBINED
This string contains the Apache LogFormat string for the NCSA combined/extended log format. This is
a popular variant that many server administrators use as it combines the COMMON (page 9) format with
REFERER (page 9) and USER_AGENT (page 9) formats.

lars.apache.REFERER
This string contains the (rudimentary) referer log format which is typically used in conjunction with the
COMMON (page 9) format.

lars.apache.USER_AGENT
This string contains the (rudimentary) user-agent log format which is typically used in conjunction with the
COMMON (page 9) format.

3.1.3 Exceptions

class lars.apache.ApacheError(message, line_number=None, line=None)
Base class for ApacheSource (page 7) errors.

Exceptions of this class take the optional arguments line_number and line for specifying the index and
content of the line that caused the error respectively. If specified, the __str__() method is overridden to
include the line number in the error message.

Parameters

• message (str11) – The error message

• line_number (int12) – The 1-based index of the line that caused the error

• line (str13) – The content of the line that caused the error

exception lars.apache.ApacheWarning
Raised when an error is encountered in parsing a log row.

3.1.4 Examples

A typical usage of this class is as follows:

11 https://docs.python.org/3.5/library/stdtypes.html#str
12 https://docs.python.org/3.5/library/functions.html#int
13 https://docs.python.org/3.5/library/stdtypes.html#str

3.1. lars.apache - Reading Apache Logs 9

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
with io.open('access.csv', 'wb') as outfile:

with apache.ApacheSource(infile) as source:
with csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)

3.2 lars.iis - Reading IIS Logs

This module provides a wrapper for W3C extended log files, typically used by the Microsoft IIS web-server.

The IISSource (page 10) class is the major element that this module provides; this is the class which wraps a
file-like object containing a W3C formatted log file and yields rows from it as tuples.

3.2.1 Classes

class lars.iis.IISSource(source)
Wraps a stream containing a IIS formatted log file.

This wrapper converts a stream containing a IIS formatted log file into an iterable which yields tuples. Each
tuple is a namedtuple instance with the fieldnames of the tuple being the sanitized versions of the field
names in the original log file (as specified in the #Fields directive).

The directives contained in the file can be obtained from attributes of the wrapper itself (useful in the case
that relative timestamps, e.g. with the #Date directive, are being used) in which case the attribute will be
the lower-cased version of the directive name without the # prefix.

Parameters source – A file-like object containing the source stream

count
Returns the number of rows successfully read from the source

date
The timestamp specified by the last encountered #Date directive (if any), as a DateTime (page 19)
instance

fields
A sequence of fields names found in the #Fields directive in the file header

finish
The timestamp found in the #End-Date directive (if any, as a DateTime (page 19) instance)

remark
The remarks recorded in the #Remark directive (if any)

software
The name of the software which produced the source file as given by the #Software directive (if
any)

start
The timestamp found in the #Start-Date directive (if any), as a DateTime (page 19) instance

version
The version of the source file, as given by the #Version directive in the header

10 Chapter 3. API Reference

Lars 1.0 Documentation, Release 1.0

3.2.2 Exceptions

class lars.iis.IISError(message, line_number=None, line=None)
Base class for IISSource errors.

Exceptions of this class take the optional arguments line_number and line for specifying the index and
content of the line that caused the error respectively. If specified, the __str__() method is overridden to
include the line number in the error message.

Parameters

• message (str14) – The error message

• line_number (int15) – The 1-based index of the line that caused the error

• line (str16) – The content of the line that caused the error

exception lars.iis.IISDirectiveError(message, line_number=None, line=None)
Raised when an error is encountered in any #Directive.

exception lars.iis.IISFieldsError(message, line_number=None, line=None)
Raised when an error is encountered in a #Fields directive.

exception lars.iis.IISVersionError(message, line_number=None, line=None)
Raised for a #Version directive with an unknown version is found.

exception lars.iis.IISWarning
Raised when an error is encountered in parsing a log row.

3.2.3 Examples

A typical usage of this class is as follows:

import io
from lars import iis, csv

with io.open('logs\iis.txt', 'rb') as infile:
with io.open('iis.csv', 'wb') as outfile:

with iis.IISSource(infile) as source:
with csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)

3.2.4 Note for maintainers

The draft standard for the W3C Extended Log File Format17 is not well written (see the various notes and com-
ments in the code); actual practice deviates from the draft in several areas, and the draft is deficient in describing
what is potentially permitted in other areas.

Examples of the format as produced by IIS (the major user of the draft) can be found on MSDN18. When main-
taining the code below, please refer to both the draft (for information on what could be included in W3C log files)
as well as the examples (for information on what typically is included in W3C log files, even when it outright
violates the draft), and bear in mind Postel’s Law19.

14 https://docs.python.org/3.5/library/stdtypes.html#str
15 https://docs.python.org/3.5/library/functions.html#int
16 https://docs.python.org/3.5/library/stdtypes.html#str
17 http://www.w3.org/TR/WD-logfile.html
18 http://bit.ly/2lPjHfz
19 http://en.wikipedia.org/wiki/Robustness_principle

3.2. lars.iis - Reading IIS Logs 11

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
http://www.w3.org/TR/WD-logfile.html
http://bit.ly/2lPjHfz
http://en.wikipedia.org/wiki/Robustness_principle

Lars 1.0 Documentation, Release 1.0

3.3 lars.csv - Writing CSV Files

This module provides a target wrapper for CSV (Comma Separated Values) formatted text files, which are typically
used as a generic source format for bulk loading databases.

The CSVTarget (page 12) class is the major element that this module provides; it is a standard target class (a
context manager with a write() (page 12) method that accepts row tuples).

3.3.1 Classes

class lars.csv.CSVTarget(fileobj, header=False, dialect=CSV_DIALECT, encoding=’utf-8’,
**kwargs)

Wraps a stream to format rows as CSV (Comma Separated Values).

This wrapper provides a simple write() (page 12) method which can be used to format row tuples as
comma separated values in a variety of common dialects. The dialect defaults to CSV_DIALECT (page 12)
which produces a typical CSV file compatible with the vast majority of products.

If you desire a different output format you can either specify a different value for the dialect parameter, or
if you only wish to use a minimal modification of the dialect you can override its attributes with keyword
arguments. For example:

CSVTarget(outfile, dialect=CSV_DIALECT, lineterminator='\n')

The encoding parameter controls the character set used in the output. This defaults to UTF-8 which is a
sensible default for most modern systems, but is a multi-byte encoding which some legacy systems (notably
mainframes) may have troubles with. In this case you can either select a single byte encoding like ISO-
8859-1 or even EBCDIC. See Python standard encodings20 for a full list of supported encodings.

Warning: The file that you wrap with CSVTarget (page 12) must be opened in binary mode ('wb')
partly because the dialect dictates the line terminator that is used, and partly because the class handles
its own character encoding.

close()
Closes the CSV output. Further calls to write() (page 12) are not permitted after calling this
method.

write(row)
Write the specified row (a tuple of values) to the wrapped output. All provided rows must have the
same number of elements. There is no need to convert elements of the tuple to str21; this will be
handled implicitly.

class lars.csv.CSV_DIALECT
This is the default dialect used by the CSVTarget (page 12) class which has the following attributes:

Attribute Value
delimiter ',' (comma)
quotechar '"' (double-quote)
quoting QUOTE_MINIMAL (page 13)
lineterminator '\r\n' (DOS line breaks)
doublequote True
escapechar None

This dialect is compatible with Microsoft Excel and the vast majority of of other products which accept CSV
as an input format. However, please note that some UNIX based database products require UNIX style line

20 http://docs.python.org/2/library/codecs.html#standard-encodings
21 https://docs.python.org/3.5/library/stdtypes.html#str

12 Chapter 3. API Reference

http://docs.python.org/2/library/codecs.html#standard-encodings
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

endings ('\n') in which case you may wish to override the lineterminator attribute (see CSVTarget
(page 12) for more information).

class lars.csv.TSV_DIALECT
This is a dialect which produces tab-delimited files, another common data exchange format also supported
by Microsoft Excel and numerous database products. This dialect has the following properties:

Attribute Value
delimiter '\t' (tab)
quotechar '"' (double-quote)
quoting QUOTE_MINIMAL (page 13)
lineterminator '\r\n' (DOS line breaks)
doublequote True
escapechar None

3.3.2 Data

lars.csv.QUOTE_NONE
This value indicates that no values should ever be quoted, even if they contain the delimiter character. In this
case, any delimiter characters appearing the data will be preceded by the dialect’s escapechar which should
be set to an appropriate value. If escapechar is not set (None) an exception will be raised if any character
that require quoting are encountered.

lars.csv.QUOTE_MINIMAL
This is the default quoting mode. In this mode the writer will only quote those values that contain the
delimiter or quotechar characters, or any of the characters in lineterminator.

lars.csv.QUOTE_NONNUMERIC
This value tells the writer to quote all numeric (int and float) values.

lars.csv.QUOTE_ALL
This value simply tells the writer to quote all values written.

3.3.3 Examples

A typical example of working with the class is shown below:

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
with io.open('apache.csv', 'wb') as outfile:

with apache.ApacheSource(infile) as source:
with csv.CSVTarget(outfile, lineterminator='\n') as target:

for row in source:
target.write(row)

3.4 lars.sql - Direct Database Output

This module provides a target wrapper for SQL-based databases, which can provide a powerful means of analyzing
log data.

The SQLTarget (page 14) class accepts row objects in its write() (page 15) method and automatically gen-
erates the required SQL INSERT statements to append records to the specified target table.

3.4. lars.sql - Direct Database Output 13

Lars 1.0 Documentation, Release 1.0

The implementation has been tested with SQLite3 (built into Python), and PostgreSQL, but should work with
any PEP-24922 (Python DB API 2.0) compatible database cursor. A list of available Python database drives is
maintained on the Python wiki DatabaseInterfaces23 page.

3.4.1 Classes

class lars.sql.SQLTarget(db_module, connection, table, insert=1, com-
mit=1000, create_table=False, drop_table=False, ig-
nore_drop_errors=True, str_type=’VARCHAR(1000)’,
int_type=’INTEGER’, fixed_type=’DOUBLE’,
bool_type=’SMALLINT’, date_type=’DATE’, time_type=’TIME’,
datetime_type=’TIMESTAMP’, ip_type=’VARCHAR(53)’, host-
name_type=’VARCHAR(255)’, path_type=’VARCHAR(260)’)

Wraps a database connection to insert row tuples into an SQL database table.

This wrapper provides a simple write() (page 15) method which can be used to insert row tuples into a
specified table, which can optionally by created automatically by the wrapper before insertion of the first
row. The wrapper must be passed a database connection object that conforms to the Python DB-API (version
2.0) as defined by PEP-24924.

The db_module parameter must be passed the module that defines the database interface (this odd require-
ment is so that the wrapper can look up the parameter style that the interface uses, and the exceptions that it
declares).

The connection parameter must be given an active database connection object (presumably belonging to the
module passed to db_module).

The table parameter is the final mandatory parameter which names the table that values are to be inserted
into. If the table name requires quoting in the target SQL dialect, you should include such quoting in the
table value (this class does not try and discern what database engine you are connecting to and thus has no
idea about non-standard quoting styles like `MySQL` or [MS-SQL]).

The insert parameter controls how many rows are inserted in a single INSERT statement. If this is set to a
value greater than 1 (the default), then the write() (page 15) method will buffer rows until the count is
reached and attempt to insert all rows at once.

New in version 0.2.

Warning: This is a relatively risky option. If an error occurs while inserting one of the rows in a
multi-row insert, then normally all rows in the buffer will fail to be inserted, but you will not be able to
determine (in your script) which row caused the failure, or which rows should be re-attempted.

In other words, only use this if you are certain that failures cannot occur during insertion (e.g. if the
target table has no constraints, no primary/unique keys, and no triggers which might signal failure).

The commit parameter controls how often a COMMIT statement is executed when inserting rows. By default,
this is 1000 which is usually sufficient to provide decent performance but may (in certain database engines
with fixed size transaction logs) cause errors, in which case you may wish to specify a lower value. This
parameter must be a multiple of the value of the insert parameter (otherwise, the COMMIT statement will
not be run reliably).

If the create_table parameter is set to True (it defaults to False), when the write() (page 15) method is
first called, the class will determine column names and types from the row passed in and will attempt to
generate and execute a CREATE TABLE statement to set up the target table automatically. The database
types that are used in the CREATE TABLE statement are controlled by other optional parameters and are
documented in the table below:

22 http://www.python.org/dev/peps/pep-0249/
23 http://wiki.python.org/moin/DatabaseInterfaces
24 http://www.python.org/dev/peps/pep-0249/

14 Chapter 3. API Reference

http://www.python.org/dev/peps/pep-0249/
http://wiki.python.org/moin/DatabaseInterfaces
http://www.python.org/dev/peps/pep-0249/

Lars 1.0 Documentation, Release 1.0

Pa-
ram-
e-
ter

Default Value (SQL)

str_typeVARCHAR(1000) - typically used for URL fields.
int_typeINTEGER - used for fields like status and size. If your server is serving large binaries you may

wish to use a 64-bit type like BIGINT here instead.
fixed_typeDOUBLE - used for fields like time_taken. Some users may wish to change this an appropriate

NUMERIC or DECIMAL specification for precision.
bool_typeSMALLINT - used for any boolean values in the input (0 for False, 1 for True)
date_typeDATE
time_typeTIME
date-
time_type

TIMESTAMP - MS-SQL users will likely wish to change this to DATETIME or
SMALLDATETIME. MySQL users may wish to change this to DATETIME, although
TIMESTAMP is technically also supported (albeit with functional differences).

ip_typeVARCHAR(53) - this is sufficient for storing all possible IP address and port combinations up
and including an IPv6 v4-mapped address. If you are certain you will only need IPv4 support you
may wish to use a length of 21 (with port) or 15 (no port). PostgreSQL users may wish to use the
special inet type instead as this is much more efficient but cannot store port information.

host-
name_type

VARCHAR(255)

path_typeVARCHAR(260)

If the drop_table parameter is set to True (it defaults to False), the wrapper will first attempt to use DROP
TABLE to destroy any existing table before attempting CREATE TABLE. If ignore_drop_errors is True
(which it is by default) then any errors encountered during the drop operation (e.g. if the table does not
exist) will be ignored.

commit
The number of rows which the class will attempt to write before performing a COMMIT. It is strongly
recommended to set this to a reasonably large number (e.g. 1000) to ensure decent INSERT perfor-
mance

insert
The number of rows which the class will attempt to insert with each INSERT statement. The commit
(page 15) parameter must be a multiple of this value.

New in version 0.2.

count
Returns the number of rows successfully written to the database so far

create_table
If True, the class will attempt to create the target table during the first call to the write() (page 15)
method

drop_table
If True, the class will attempt to unconditionally drop any existing target table during the first call to
the write() (page 15) method

ignore_drop_errors
If True, and drop_table (page 15) is True, any errors encountered during the DROP TABLE oper-
ation will be ignored (typically useful when you are not sure the target table exists or not)

table
The name of the target table in the database, including any required escaping or quotation

close()
Close the SQL target. This flushes any remaining rows from the internal buffer and the cursor against
the provided connection. Note that it does not close the connection (as this instance didn’t open the
connection).

3.4. lars.sql - Direct Database Output 15

Lars 1.0 Documentation, Release 1.0

write(row)
Write row (a tuple of values) to the table specified in the constructor. If this is the first row written,
and create_table was set to True in the constructor, this operation will also attempt to create the table
(optionally dropping any existing table, again depending on constructor values).

class lars.sql.OracleTarget(db_module, connection, table, insert=1, commit=1000, cre-
ate_table=False, drop_table=False, ignore_drop_errors=True,
str_type=’VARCHAR2(1000)’, int_type=’NUMBER(10)’,
fixed_type=’NUMBER’, bool_type=’NUMBER(1)’,
date_type=’DATE’, time_type=’DATE’, datetime_type=’DATE’,
ip_type=’VARCHAR2(53)’, hostname_type=’VARCHAR2(255)’,
path_type=’VARCHAR2(260)’)

The Oracle database is sufficiently peculiar (particularly in its non-standard syntax for multi-row INSERTs,
and odd datatypes) to require its own sub-class of SQLTarget (page 14). This sub-class takes all the same
parameters as SQLTarget (page 14), but customizes them specifically for Oracle, and overrides the SQL
generation methods to cope with Oracle’s strange syntax.

New in version 0.2.

3.4.2 Exceptions

exception lars.sql.SQLError(message, row=None)
Base class for all fatal errors generated by classes in the sql module.

Exceptions of this class take the optional argument row for specifying the row (if any) that was being inserted
(or retrieved) when the error occurred. If specified, the __str__() method is overridden to include the
row in the error message.

Parameters

• message (str25) – The error message

• row – The row being processed when the error occurred

exception lars.sql.SQLWarning
Raised when a non-fatal condition occurs while inserting data into a database.

3.4.3 Examples

A typical example of working with the class is shown below:

import io
import sqlite3
from lars import apache, sql

connection = sqlite3.connect('apache.db',
detect_types=sqlite3.PARSE_DECLTYPES)

with io.open('/var/log/apache2/access.log', 'rb') as infile:
with io.open('apache.csv', 'wb') as outfile:

with apache.ApacheSource(infile) as source:
with sql.SQLTarget(sqlite3, connection, 'log_entries',

create_table=True) as target:
for row in source:

target.write(row)

25 https://docs.python.org/3.5/library/stdtypes.html#str

16 Chapter 3. API Reference

https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

3.5 lars.geoip - GeoIP Database Access

This module provides a common interface to the GeoIP database. Most users will only need to be aware of the
init_database() function in this module, which is used to initialize the GeoIP database(s). All other func-
tions should be ignored; instead, users should use the country (page 26), region (page 26), city (page 26),
and coords (page 26) attributes of the IPv4Address (page 25) and IPv6Address (page 28) classes.

3.5.1 Functions

lars.geoip.init_databases(v4_geo_filename=None, v4_isp_filename=None,
v4_org_filename=None, v6_geo_filename=None,
v6_isp_filename=None, v6_org_filename=None, memcache=True)

Initializes the global GeoIP database instances in a thread-safe manner.

This function opens GeoIP databases for use by the IPv4Address (page 25) and IPv6Address
(page 28) classes. There are several types of GeoIP databases. The country, region, and city
databases are considered “geographical” databases and should be specified for the v4_geo_filename and/or
v6_geo_filename databases (for IPv4 and IPv6 databases respectively). The ISP and organisational
databases are treated separately as they contain no geographical information. If you have such databases,
specify them as the values of the v4_isp_filename, v6_isp_filename, v4_org_filename, and v6_org_filename
parameters (all optional).

GeoIP geographical databases are hierarchical: if you open a country database, you will only be able to use
country-level lookups. However, city-level databases enable all geographical lookups (country, region, city,
and coordinates).

By default, the function caches the entire content of database(s) in memory (on the assumption that just
about any modern machine has more than sufficient RAM for this), but this behaviour can be overridden
with the memcache parameter.

Warning: At the time of writing, the free GeoLite IPv6 city-level database does not work (the authors
seem to be using a new database format which the pygeoip API does not yet know). This does not affect
the IPv4 city-level database.

Parameters

• v4_geo_filename (str26) – The filename of the IPv4 geographic database (op-
tional)

• v4_isp_filename (str27) – The filename of the IPv4 ISP database (optional)

• v4_org_filename (str28) – The filename of the IPv4 organisation database (op-
tional)

• v6_geo_filename (str29) – The filename of the IPv6 geographic database (op-
tional)

• v6_isp_filename (str30) – The filename of the IPv6 ISP database (optional)

• v6_org_filename (str31) – The filename of the IPv6 organisation database (op-
tional)

• memcache (bool32) – Set to False if you don’t wish to cache the db in RAM (optional)

26 https://docs.python.org/3.5/library/stdtypes.html#str
27 https://docs.python.org/3.5/library/stdtypes.html#str
28 https://docs.python.org/3.5/library/stdtypes.html#str
29 https://docs.python.org/3.5/library/stdtypes.html#str
30 https://docs.python.org/3.5/library/stdtypes.html#str
31 https://docs.python.org/3.5/library/stdtypes.html#str
32 https://docs.python.org/3.5/library/functions.html#bool

3.5. lars.geoip - GeoIP Database Access 17

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#bool

Lars 1.0 Documentation, Release 1.0

lars.geoip.country_code_by_addr(address)
Returns the country code associated with the specified address, or None if the address is not found in the
GeoIP geographical database. You should use the country (page 26) or country (page 29) attributes
instead of this function.

If the geographical database for the address type has not been initialized, the function raises a ValueError.

Parameters address – The address to lookup the country for

Returns str The country code associated with the address

lars.geoip.city_by_addr(address)
Returns the city associated with the address. You should use the city (page 26) or city (page 29)
attributes instead of this function.

Given an address, this function returns the city associated with it. Note: this function will raise an exception
if the GeoIP database loaded is above city level.

If the geographical database for the address type has not been initialized, the function raises a ValueError.

Parameters address – The address to lookup the city for

Returns str The city associated with the address, or None

lars.geoip.region_by_addr(address)
Returns the region (e.g. state) associated with the address. You should use the region (page 26) or
region (page 30) attributes instead of this function.

Given an address, this function returns the region associated with it. In the case of the US, this is the state.
In the case of other countries it may be a state, county, something GeoIP-specific or simply undefined. Note:
this function will raise an exception if the GeoIP database loaded is country-level only.

If the geographical database for the address type has not been initialized, the function raises a ValueError.

Parameters address – The address to lookup the region for

Returns str The region associated with the address, or None

lars.geoip.coords_by_addr(address)
Returns the coordinates (long, lat) associated with the address. You should use the coords (page 26) or
coords (page 26) attributes instead of this function.

Given an address, this function returns a tuple with the attributes longitude and latitude (in that order)
representing the (very) approximate coordinates of the address on the globe. Note: this function will raise
an exception if the GeoIP database loaded is above city level.

If the geographical database for the address type has not been initialized, the function raises a ValueError.

Parameters address – The address to locate

Returns str The coordinates associated with the address, or None

lars.geoip.isp_by_addr(address)
Returns the ISP that services the address. You should use the isp (page 26) or isp (page 26) attributes
instead of this function.

If the ISP database for the address type has not been initialized, the function raises a ValueError.

Parameters address – The address to lookup the ISP for

Returns str The ISP associated with the address, or None

lars.geoip.org_by_addr(address)
Returns the organisation that owns the address, or the ISP that services the address (in the case that the
organisation has opted not to reveal its address). If the organisational database for the address type has not
been initialized, the function raises a ValueError.

18 Chapter 3. API Reference

Lars 1.0 Documentation, Release 1.0

3.5.2 Examples

3.6 lars.datatypes - Web Log Datatypes

This module wraps various Python data-types which are commonly found in log files to provide them with default
string coercions and enhanced attributes. Each datatype is given a simple constructor function which accepts a
string in a common format (for example, the date() (page 34) function which accepts dates in YYYY-MM-DD
format), and returns the converted data.

Most of the time you will not need the functions in this module directly, but the attributes of the classes are
extremely useful for filtering and transforming log data for output.

3.6.1 Classes

class lars.datatypes.DateTime
Represents a timestamp.

This type is returned by the datetime() (page 35) function and represents a timestamp (with optional
timezone). A DateTime (page 19) object is a single object containing all the information from a Date
(page 23) object and a Time (page 32) object. Like a Date (page 23) object, DateTime (page 19) as-
sumes the current Gregorian calendar extended in both directions; like a time object, DateTime (page 19)
assumes there are exactly 3600*24 seconds in every day.

Other constructors, all class methods:

classmethod today()
Return the current local datetime, with tzinfo (page 20) None. This is equivalent to DateTime.
fromtimestamp(time.time()). See also now() (page 19), fromtimestamp() (page 19).

classmethod now([tz])
Return the current local date and time. If optional argument tz is None or not specified, this is
like today() (page 19), but, if possible, supplies more precision than can be gotten from going
through a time.time()33 timestamp (for example, this may be possible on platforms supplying the
C gettimeofday() function).

Else tz must be an instance of a class tzinfo (page 20) subclass, and the current date and time
are converted to tz’s time zone. In this case the result is equivalent to tz.fromutc(DateTime.
utcnow().replace(tzinfo=tz)). See also today() (page 19), utcnow() (page 19).

classmethod utcnow()
Return the current UTC date and time, with tzinfo (page 20) None. This is like now() (page 19),
but returns the current UTC date and time, as a naive DateTime (page 19) object. See also now()
(page 19).

classmethod fromtimestamp(timestamp[, tz])
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.
time()34. If optional argument tz is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned DateTime (page 19) object is naive.

Else tz must be an instance of a class tzinfo (page 20) subclass, and the timestamp is con-
verted to tz’s time zone. In this case the result is equivalent to tz.fromutc(DateTime.
utcfromtimestamp(timestamp).replace(tzinfo=tz)).

fromtimestamp() (page 19) may raise ValueError35, if the timestamp is out of the range of
values supported by the platform C localtime() or gmtime() functions. It’s common for this
to be restricted to years in 1970 through 2038. Note that on non-POSIX systems that include leap
seconds in their notion of a timestamp, leap seconds are ignored by fromtimestamp() (page 19),

33 https://docs.python.org/3.5/library/time.html#time.time
34 https://docs.python.org/3.5/library/time.html#time.time
35 https://docs.python.org/3.5/library/exceptions.html#ValueError

3.6. lars.datatypes - Web Log Datatypes 19

https://docs.python.org/3.5/library/time.html#time.time
https://docs.python.org/3.5/library/time.html#time.time
https://docs.python.org/3.5/library/time.html#time.time
https://docs.python.org/3.5/library/exceptions.html#ValueError

Lars 1.0 Documentation, Release 1.0

and then it’s possible to have two timestamps differing by a second that yield identical DateTime
(page 19) objects. See also utcfromtimestamp() (page 20).

classmethod utcfromtimestamp(timestamp)
Return the UTC DateTime (page 19) corresponding to the POSIX timestamp, with tzinfo
(page 20) None. This may raise ValueError36, if the timestamp is out of the range of values
supported by the platform C gmtime() function. It’s common for this to be restricted to years in
1970 through 2038. See also fromtimestamp() (page 19).

classmethod combine(date, time)
Return a new DateTime (page 19) object whose date components are equal to the given date
(page 34) object’s, and whose time components and tzinfo (page 20) attributes are equal to the given
Time (page 32) object’s. For any DateTime (page 19) object d, d == DateTime.combine(d.
date(), d.timetz()). If date is a DateTime (page 19) object, its time components and
tzinfo (page 20) attributes are ignored.

classmethod strptime(date_string, format)
Return a DateTime (page 19) corresponding to date_string, parsed according to format.
This is equivalent to DateTime(*(time.strptime(date_string, format)[0:6])).
ValueError37 is raised if the date_string and format can’t be parsed by time.strptime()38

or if it returns a value which isn’t a time tuple.

Class attributes:

min
The earliest representable DateTime (page 19).

max
The latest representable DateTime (page 19).

resolution
The smallest possible difference between non-equal DateTime (page 19) objects,
timedelta(microseconds=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24).

minute
In range(60).

second
In range(60).

microsecond
In range(1000000).

tzinfo
The object passed as the tzinfo argument to the DateTime (page 19) constructor, or None if none
was passed.

Supported operations:

36 https://docs.python.org/3.5/library/exceptions.html#ValueError
37 https://docs.python.org/3.5/library/exceptions.html#ValueError
38 https://docs.python.org/3.5/library/time.html#time.strptime

20 Chapter 3. API Reference

https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/time.html#time.strptime

Lars 1.0 Documentation, Release 1.0

Operation Result
datetime2 = datetime1 +
timedelta

(1)

datetime2 = datetime1 -
timedelta

(2)

timedelta = datetime1 -
datetime2

(3)

datetime1 < datetime2 Compares DateTime (page 19) to DateTime
(page 19). (4)

1. datetime2 is a duration of timedelta removed from datetime1, moving forward in time if timedelta.
days > 0, or backward if timedelta.days < 0. The result has the same tzinfo (page 20)
attribute as the input datetime, and datetime2 - datetime1 == timedelta after. OverflowError39 is
raised if datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time
zone adjustments are done even if the input is an aware object.

2. Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result has
the same tzinfo (page 20) attribute as the input datetime, and no time zone adjustments are done
even if the input is aware. This isn’t quite equivalent to datetime1 + (-timedelta), because -timedelta
in isolation can overflow in cases where datetime1 - timedelta does not.

3. Subtraction of a DateTime (page 19) from a DateTime (page 19) is defined only if both operands
are naive, or if both are aware. If one is aware and the other is naive, TypeError40 is raised.

If both are naive, or both are aware and have the same tzinfo (page 20) attribute, the tzinfo
(page 20) attributes are ignored, and the result is a timedelta object t such that datetime2 + t
== datetime1. No time zone adjustments are done in this case.

If both are aware and have different tzinfo (page 20) attributes, a-b acts as if a and b were
first converted to naive UTC datetimes first. The result is (a.replace(tzinfo=None) - a.
utcoffset()) - (b.replace(tzinfo=None) - b.utcoffset()) except that the im-
plementation never overflows.

4. datetime1 is considered less than datetime2 when datetime1 precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError41 is raised. If both comparands are
aware, and have the same tzinfo (page 20) attribute, the common tzinfo (page 20) attribute is ig-
nored and the base datetimes are compared. If both comparands are aware and have different tzinfo
(page 20) attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from
self.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object
addresses, datetime comparison normally raises TypeError42 if the other comparand isn’t also a
DateTime (page 19) object. However, NotImplemented is returned instead if the other com-
parand has a timetuple() attribute. This hook gives other kinds of date objects a chance at imple-
menting mixed-type comparison. If not, when a DateTime (page 19) object is compared to an object
of a different type, TypeError43 is raised unless the comparison is == or !=. The latter cases return
False or True, respectively.

DateTime (page 19) objects can be used as dictionary keys. In Boolean contexts, all DateTime (page 19)
objects are considered to be true.

Instance methods:
39 https://docs.python.org/3.5/library/exceptions.html#OverflowError
40 https://docs.python.org/3.5/library/exceptions.html#TypeError
41 https://docs.python.org/3.5/library/exceptions.html#TypeError
42 https://docs.python.org/3.5/library/exceptions.html#TypeError
43 https://docs.python.org/3.5/library/exceptions.html#TypeError

3.6. lars.datatypes - Web Log Datatypes 21

https://docs.python.org/3.5/library/exceptions.html#OverflowError
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/exceptions.html#TypeError

Lars 1.0 Documentation, Release 1.0

date()
Return date (page 34) object with same year, month and day.

time()
Return Time (page 32) object with same hour, minute, second and microsecond. tzinfo (page 20)
is None. See also method timetz() (page 22).

timetz()
Return Time (page 32) object with same hour, minute, second, microsecond, and tzinfo attributes.
See also method time() (page 35).

replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])
Return a DateTime with the same attributes, except for those attributes given new values by whichever
keyword arguments are specified. Note that tzinfo=None can be specified to create a naive Date-
Time from an aware DateTime with no conversion of date and time data.

astimezone(tz)
Return a DateTime (page 19) object with new tzinfo (page 20) attribute tz, adjusting the date and
time data so the result is the same UTC time as self, but in tz’s local time.

tz must be an instance of a tzinfo (page 20) subclass, and its utcoffset() (page 22) and dst()
(page 22) methods must not return None. self must be aware (self.tzinfo must not be None,
and self.utcoffset() must not return None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self : no adjustment of date or time
data is performed. Else the result is local time in time zone tz, representing the same UTC time as self :
after astz = dt.astimezone(tz), astz - astz.utcoffset() will usually have the
same date and time data as dt - dt.utcoffset(). The discussion of class tzinfo (page 20)
explains the cases at Daylight Saving Time transition boundaries where this cannot be achieved (an
issue only if tz models both standard and daylight time).

If you merely want to attach a time zone object tz to a DateTime dt without adjustment of date and time
data, use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an
aware DateTime dt without conversion of date and time data, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a tzinfo (page 20)
subclass to affect the result returned by astimezone() (page 22). Ignoring error cases,
astimezone() (page 22) acts like:

def astimezone(self, tz):
if self.tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc(utc)

utcoffset()
If tzinfo (page 20) is None, returns None, else returns self.tzinfo.utcoffset(self),
and raises an exception if the latter doesn’t return None, or a timedelta object representing a whole
number of minutes with magnitude less than one day.

dst()
If tzinfo (page 20) is None, returns None, else returns self.tzinfo.dst(self), and raises
an exception if the latter doesn’t return None, or a timedelta object representing a whole number
of minutes with magnitude less than one day.

tzname()
If tzinfo (page 20) is None, returns None, else returns self.tzinfo.tzname(self), raises
an exception if the latter doesn’t return None or a string object,

weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.
date().weekday(). See also isoweekday() (page 22).

22 Chapter 3. API Reference

Lars 1.0 Documentation, Release 1.0

isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.
date().isoweekday(). See also weekday() (page 22), isocalendar() (page 23).

isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date().
isocalendar().

isoformat([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecond (page 20) is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() (page 22) does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or,
if microsecond (page 20) is 0 YYYY-MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character separator, placed between the date and
time portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'

class lars.datatypes.Date
Represents a date.

This type is returned by the date() (page 34) function and represents a date. A Date (page 23) object
represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar indefinitely
extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book
for algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

Other constructors, all class methods:

classmethod today()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

classmethod fromtimestamp(timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time()44.
This may raise ValueError45, if the timestamp is out of the range of values supported by the plat-
form C localtime() function. It’s common for this to be restricted to years from 1970 through
2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp() (page 23).

Class attributes:

min
The earliest representable date, date(MINYEAR, 1, 1).

max
The latest representable date, date(MAXYEAR, 12, 31).

resolution
The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

44 https://docs.python.org/3.5/library/time.html#time.time
45 https://docs.python.org/3.5/library/exceptions.html#ValueError

3.6. lars.datatypes - Web Log Datatypes 23

https://docs.python.org/3.5/library/time.html#time.time
https://docs.python.org/3.5/library/exceptions.html#ValueError

Lars 1.0 Documentation, Release 1.0

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = date1 +
timedelta

date2 is timedelta.days days removed from date1. (1)

date2 = date1 -
timedelta

Computes date2 such that date2 + timedelta == date1.
(2)

timedelta = date1 -
date2

(3)

date1 < date2 date1 is considered less than date2 when date1 precedes date2 in
time. (4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.
days < 0. Afterward date2 - date1 == timedelta.days. timedelta.seconds
and timedelta.microseconds are ignored. OverflowError46 is raised if date2.year
would be smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to date1 + (-timedelta), because -timedeltan i isolation can overflow in cases
where date1 - timedelta does not . timedelta.seconds and timedelta.microseconds are
ignored .

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == date1 after.

4. In other words, date1 < date2 if and only if date1.toordinal() < date2.
toordinal(). In order to stop comparison from falling back to the default scheme of comparing
object addresses, date comparison normally raises TypeError47 if the other comparand isn’t also
a date (page 34) object. However, NotImplemented is returned instead if the other comparand
has a timetuple() attribute. This hook gives other kinds of date objects a chance at implementing
mixed-type comparison. If not, when a date (page 34) object is compared to an object of a different
type, TypeError48 is raised unless the comparison is == or !=. The latter cases return False or
True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date (page 34) objects are considered to be
true.

Instance methods:

replace(year, month, day)
Return a date with the same value, except for those parameters given new values by whichever
keyword arguments are specified. For example, if d == Date(2002, 12, 31), then d.
replace(day=26) == Date(2002, 12, 26).

weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example,
Date(2002, 12, 4).weekday() == 2, a Wednesday. See also isoweekday() (page 24).

isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example,
Date(2002, 12, 4).isoweekday() == 3, a Wednesday. See also weekday() (page 24),
isocalendar() (page 24).

46 https://docs.python.org/3.5/library/exceptions.html#OverflowError
47 https://docs.python.org/3.5/library/exceptions.html#TypeError
48 https://docs.python.org/3.5/library/exceptions.html#TypeError

24 Chapter 3. API Reference

https://docs.python.org/3.5/library/exceptions.html#OverflowError
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/exceptions.html#TypeError

Lars 1.0 Documentation, Release 1.0

isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See http://www.phys.uu.nl/
~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a
Sunday. The first week of an ISO year is the first (Gregorian) calendar week of a year containing a
Thursday. This is called week number 1, and the ISO year of that Thursday is the same as its Gregorian
year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29
Dec 2003 and ends on Sunday, 4 Jan 2004, so that Date(2003, 12, 29).isocalendar()
== (2004, 1, 1) and Date(2004, 1, 4).isocalendar() == (2004, 1, 7).

isoformat()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example,
Date(2002, 12, 4).isoformat() == '2002-12-04'.

strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring
to hours, minutes or seconds will see 0 values.

class lars.datatypes.Hostname(s)
Represents an Internet hostname and provides attributes for DNS resolution.

This type is returned by the hostname() (page 35) function and represents a DNS hostname. The
address (page 34) property allows resolution of the hostname to an IP address.

Parameters hostname (str49) – The hostname to parse

address
Attempts to resolve the hostname into an IPv4 or IPv6 address (returning an IPv4Address (page 25)
or IPv6Address (page 28) object repsectively). The result of the DNS query (including negative
lookups is cached, so repeated queries for the same hostname should be extremely fast.

class lars.datatypes.IPv4Address(address)
Represents an IPv4 address.

This type is returned by the address() (page 34) function and represents an IPv4 address and provides
various attributes and comparison operators relevant to such addresses.

For example, to test whether an address belongs to particular network you can use the in operator with the
result of the network() (page 35) function:

address('192.168.0.64') in network('192.168.0.0/16')

The hostname (page 35) attribute will perform reverse DNS resolution to determine a hostname associated
with the address (if any). The result of the query (including negative lookups) is cached so subsequent
queries of the same address should be extermely rapid.

If the lars.geoip (page 17) module has been initialized with a database, the GeoIP-related attributes
country (page 26), region (page 26), city (page 26), and coords (page 26) will return the country,
region, city and a (longitude, latitude) tuple respectively.

compressed
Returns the shorthand version of the IP address as a string (this is the default string conversion).

exploded
Returns the longhand version of the IP address as a string.

is_link_local
Returns True if the address is reserved for link-local. See RFC 392750 for details.

49 https://docs.python.org/3.5/library/stdtypes.html#str
50 http://tools.ietf.org/html/rfc3927

3.6. lars.datatypes - Web Log Datatypes 25

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm
https://docs.python.org/3.5/library/stdtypes.html#str
http://tools.ietf.org/html/rfc3927

Lars 1.0 Documentation, Release 1.0

is_loopback
Returns True if the address is a loopback address. See RFC 333051 for details.

is_multicast
Returns True if the address is reserved for multicast use. See RFC 317152 for details.

is_private
Returns True if this address is allocated for private networks. See RFC 191853 for details.

is_reserved
Returns True if the address is otherwise IETF reserved.

is_unspecified
Returns True if the address is unspecified. See RFC 5735 354 for details.

packed
Returns the binary representation of this address.

city
If init_databases() (page 17) has been called with a city-level GeoIP database, returns the city
of the address.

coords
If init_databases() (page 17) has been called with a city-level GeoIP database, returns a (lon-
gitude, latitude) tuple describing the approximate location of the address.

country
If init_databases() (page 17) has been called to initialize a GeoIP database, returns the country
of the address.

hostname
Performs a reverse DNS lookup to attempt to determine a hostname for the address. Lookups (includ-
ing negative lookups) are cached so that repeated lookups are extremely quick. Returns a Hostname
(page 25) object if the lookup is successful, or None.

isp
If init_databases() (page 17) has been called with an ISP level database, returns the ISP that
provides connectivity for the address.

org
If init_databases() (page 17) has been called with an organisation level database, returns the
name of the organisation the address belongs to.

region
If init_databases() (page 17) has been called with a region-level (or lower) GeoIP database,
returns the region of the address.

class lars.datatypes.IPv4Network(address, strict=True)
This type is returned by the network() (page 35) function. This class represents and manipulates 32-bit
IPv4 networks.

Attributes: [examples for IPv4Network(‘192.0.2.0/27’)]

• network_address: IPv4Address('192.0.2.0')

• hostmask: IPv4Address('0.0.0.31')

• broadcast_address: IPv4Address('192.0.2.32')

• netmask: IPv4Address('255.255.255.224')

• prefixlen: 27
51 http://tools.ietf.org/html/rfc3330
52 http://tools.ietf.org/html/rfc3171
53 http://tools.ietf.org/html/rfc1918
54 http://tools.ietf.org/html/rfc5735#section-3

26 Chapter 3. API Reference

http://tools.ietf.org/html/rfc3330
http://tools.ietf.org/html/rfc3171
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc5735#section-3

Lars 1.0 Documentation, Release 1.0

address_exclude(other)
Remove an address from a larger block.

For example:

addr1 = network('192.0.2.0/28')
addr2 = network('192.0.2.1/32')
addr1.address_exclude(addr2) = [

IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29'),
]

Parameters other – An IPv4Network object of the same type.

Returns An iterator of the IPv4Network objects which is self minus other.

compare_networks(other)
Compare two IP objects.

This is only concerned about the comparison of the integer representation of the network addresses.
This means that the host bits aren’t considered at all in this method. If you want to compare host bits,
you can easily enough do a HostA._ip < HostB._ip.

Parameters other – An IP object.

Returns -1, 0, or 1 for less than, equal to or greater than respectively.

hosts()
Generate iterator over usable hosts in a network.

This is like __iter__() except it doesn’t return the network or broadcast addresses.

overlaps(other)
Tells if self is partly contained in other.

subnets(prefixlen_diff=1, new_prefix=None)
The subnets which join to make the current subnet.

In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for
IPv6), yield an iterator with just ourself.

Parameters

• prefixlen_diff (int55) – An integer, the amount the prefix length should be
increased by. This should not be set if new_prefix is also set.

• new_prefix (int56) – The desired new prefix length. This must be a larger number
(smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also
set.

Returns An iterator of IPv(4|6) objects.

supernet(prefixlen_diff=1, new_prefix=None)
The supernet containing the current network.

Parameters

• prefixlen_diff (int57) – An integer, the amount the prefix length of the net-
work should be decreased by. For example, given a /24 network and a prefixlen_diff
of 3, a supernet with a /21 netmask is returned.

55 https://docs.python.org/3.5/library/functions.html#int
56 https://docs.python.org/3.5/library/functions.html#int
57 https://docs.python.org/3.5/library/functions.html#int

3.6. lars.datatypes - Web Log Datatypes 27

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Lars 1.0 Documentation, Release 1.0

• new_prefix (int58) – The desired new prefix length. This must be a smaller num-
ber (larger prefix) than the existing prefix. This should not be set if prefixlen_diff is
also set.

Returns An IPv4Network object.

is_link_local
Returns True if the address is reserved for link-local. See RFC 429159 for details.

is_loopback
Returns True if the address is a loopback address. See RFC 2373 2.5.360 for details.

is_multicast
Returns True if the address is reserved for multicast use. See RFC 2373 2.761 for details.

is_private
Returns True if this address is allocated for private networks. See RFC 419362 for details.

is_reserved
Returns True if the address is otherwise IETF reserved.

is_unspecified
Returns True if the address is unspecified. See RFC 2373 2.5.263 for details.

class lars.datatypes.IPv4Port(address)
Represents an IPv4 address and port number.

This type is returned by the address() (page 34) function and represents an IPv4 address and port
number. Other than this, all properties of the base IPv4Address (page 25) class are equivalent.

port
An integer representing the network port for a connection

class lars.datatypes.IPv6Address(address)
Represents an IPv6 address.

This type is returned by the address() (page 34) function and represents an IPv6 address and provides
various attributes and comparison operators relevant to such addresses.

For example, to test whether an address belongs to particular network you can use the in operator with the
result of the network() (page 35) function:

address('::1') in network('::/16')

The hostname (page 35) attribute will perform reverse DNS resolution to determine a hostname associated
with the address (if any). The result of the query (including negative lookups) is cached so subsequent
queries of the same address should be extermely rapid.

If the lars.geoip (page 17) module has been initialized with a database, the GeoIP-related attributes
country (page 29), region (page 30), city (page 29), and coords (page 29) will return the country,
region, city and a (longitude, latitude) tuple respectively.

compressed
Returns the shorthand version of the IP address as a string (this is the default string conversion).

exploded
Returns the longhand version of the IP address as a string.

ipv4_mapped
Returns the IPv4 mapped address if the IPv6 address is a v4 mapped address, or None otherwise.

58 https://docs.python.org/3.5/library/functions.html#int
59 http://tools.ietf.org/html/rfc4291
60 http://tools.ietf.org/html/rfc2373#section-2.5.3
61 http://tools.ietf.org/html/rfc2373#section-2.7
62 http://tools.ietf.org/html/rfc4193
63 http://tools.ietf.org/html/rfc2373#section-2.5.2

28 Chapter 3. API Reference

https://docs.python.org/3.5/library/functions.html#int
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc2373#section-2.5.3
http://tools.ietf.org/html/rfc2373#section-2.7
http://tools.ietf.org/html/rfc4193
http://tools.ietf.org/html/rfc2373#section-2.5.2

Lars 1.0 Documentation, Release 1.0

is_link_local
Returns True if the address is reserved for link-local. See RFC 429164 for details.

is_loopback
Returns True if the address is a loopback address. See RFC 2373 2.5.365 for details.

is_multicast
Returns True if the address is reserved for multicast use. See RFC 2373 2.766 for details.

is_private
Returns True if this address is allocated for private networks. See RFC 419367 for details.

is_reserved
Returns True if the address is otherwise IETF reserved.

is_site_local
Returns True if the address is reserved for site-local.

Note that the site-local address space has been deprecated by RFC 387968. Use is_private
(page 29) to test if this address is in the space of unique local addresses as defined by RFC 419369.
See RFC 3513 2.5.670 for details.

is_unspecified
Returns True if the address is unspecified. See RFC 2373 2.5.271 for details.

packed
Returns the binary representation of this address.

sixtofour
Returns the IPv4 6to4 embedded address if present, or None if the address doesn’t appear to contain
a 6to4 embedded address.

teredo
Returns a (server, client) tuple of embedded Teredo IPs, or None if the address doesn’t
appear to be a Teredo address (doesn’t start with 2001::/32).

city
If init_databases() (page 17) has been called with a city-level GeoIP IPv6 database, returns the
city of the address.

coords
If init_databases() (page 17) has been called with a city-level GeoIP IPv6 database, returns a
(longitude, latitude) tuple describing the approximate location of the address.

country
If init_databases() (page 17) has been called to initialize a GeoIP IPv6 database, returns the
country of the address.

hostname
Performs a reverse DNS lookup to attempt to determine a hostname for the address. Lookups (includ-
ing negative lookups) are cached so that repeated lookups are extremely quick. Returns a Hostname
(page 25) object if the lookup is successful, or None.

isp
If init_databases() (page 17) has been called with an ISP level IPv6 database, returns the ISP
that provides connectivity for the address.

64 http://tools.ietf.org/html/rfc4291
65 http://tools.ietf.org/html/rfc2373#section-2.5.3
66 http://tools.ietf.org/html/rfc2373#section-2.7
67 http://tools.ietf.org/html/rfc4193
68 http://tools.ietf.org/html/rfc3879
69 http://tools.ietf.org/html/rfc4193
70 http://tools.ietf.org/html/rfc3513#section-2.5.6
71 http://tools.ietf.org/html/rfc2373#section-2.5.2

3.6. lars.datatypes - Web Log Datatypes 29

http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc2373#section-2.5.3
http://tools.ietf.org/html/rfc2373#section-2.7
http://tools.ietf.org/html/rfc4193
http://tools.ietf.org/html/rfc3879
http://tools.ietf.org/html/rfc4193
http://tools.ietf.org/html/rfc3513#section-2.5.6
http://tools.ietf.org/html/rfc2373#section-2.5.2

Lars 1.0 Documentation, Release 1.0

org
If init_databases() (page 17) has been called with an IPv6 organisation level database, returns
the name of the organisation the address belongs to.

region
If init_databases() (page 17) has been called with a region-level (or lower) GeoIP IPv6
database, returns the region of the address.

class lars.datatypes.IPv6Network(address, strict=True)
This type is returned by the network() (page 35) function. This class represents and manipulates 128-bit
IPv6 networks.

address_exclude(other)
Remove an address from a larger block.

For example:

addr1 = network('192.0.2.0/28')
addr2 = network('192.0.2.1/32')
addr1.address_exclude(addr2) = [

IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29'),
]

Parameters other – An IPv4Network object of the same type.

Returns An iterator of the IPv4Network objects which is self minus other.

compare_networks(other)
Compare two IP objects.

This is only concerned about the comparison of the integer representation of the network addresses.
This means that the host bits aren’t considered at all in this method. If you want to compare host bits,
you can easily enough do a HostA._ip < HostB._ip.

Parameters other – An IP object.

Returns -1, 0, or 1 for less than, equal to or greater than respectively.

hosts()
Generate iterator over usable hosts in a network.

This is like __iter__() except it doesn’t return the network or broadcast addresses.

overlaps(other)
Tells if self is partly contained in other.

subnets(prefixlen_diff=1, new_prefix=None)
The subnets which join to make the current subnet.

In the case that self contains only one IP (self._prefixlen == 32 for IPv4 or self._prefixlen == 128 for
IPv6), yield an iterator with just ourself.

Parameters

• prefixlen_diff (int72) – An integer, the amount the prefix length should be
increased by. This should not be set if new_prefix is also set.

• new_prefix (int73) – The desired new prefix length. This must be a larger number
(smaller prefix) than the existing prefix. This should not be set if prefixlen_diff is also
set.

Returns An iterator of IPv(4|6) objects.

72 https://docs.python.org/3.5/library/functions.html#int
73 https://docs.python.org/3.5/library/functions.html#int

30 Chapter 3. API Reference

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Lars 1.0 Documentation, Release 1.0

supernet(prefixlen_diff=1, new_prefix=None)
The supernet containing the current network.

Parameters

• prefixlen_diff (int74) – An integer, the amount the prefix length of the net-
work should be decreased by. For example, given a /24 network and a prefixlen_diff
of 3, a supernet with a /21 netmask is returned.

• new_prefix (int75) – The desired new prefix length. This must be a smaller num-
ber (larger prefix) than the existing prefix. This should not be set if prefixlen_diff is
also set.

Returns An IPv4Network object.

is_link_local
Returns True if the address is reserved for link-local. See RFC 429176 for details.

is_loopback
Returns True if the address is a loopback address. See RFC 2373 2.5.377 for details.

is_multicast
Returns True if the address is reserved for multicast use. See RFC 2373 2.778 for details.

is_private
Returns True if this address is allocated for private networks. See RFC 419379 for details.

is_reserved
Returns True if the address is otherwise IETF reserved.

is_unspecified
Returns True if the address is unspecified. See RFC 2373 2.5.280 for details.

class lars.datatypes.IPv6Port(address)
Represents an IPv6 address and port number.

This type is returned by the address() (page 34) function an represents an IPv6 address and port number.
The string representation of an IPv6 address with port necessarily wraps the address portion in square
brakcets as otherwise the port number will make the address ambiguous. Other than this, all properties of
the base IPv6Address (page 28) class are equivalent.

port
An integer representing the network port for a connection

class lars.datatypes.Path
Represents a path.

This type is returned by the path() (page 35) function and represents a path in POSIX format (forward
slash separators and no drive portion). It is used to represent the path portion of URLs and provides attributes
for extracting parts of the path there-in.

The original path can be obtained as a string by asking for the string conversion of this class, like so:

p = datatypes.path('/foo/bar/baz.ext')
assert p.dirname == '/foo/bar'
assert p.basename == 'baz.ext'
assert str(p) == '/foo/bar/baz.ext'

dirname
A string containing all of the path except the basename at the end

74 https://docs.python.org/3.5/library/functions.html#int
75 https://docs.python.org/3.5/library/functions.html#int
76 http://tools.ietf.org/html/rfc4291
77 http://tools.ietf.org/html/rfc2373#section-2.5.3
78 http://tools.ietf.org/html/rfc2373#section-2.7
79 http://tools.ietf.org/html/rfc4193
80 http://tools.ietf.org/html/rfc2373#section-2.5.2

3.6. lars.datatypes - Web Log Datatypes 31

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc2373#section-2.5.3
http://tools.ietf.org/html/rfc2373#section-2.7
http://tools.ietf.org/html/rfc4193
http://tools.ietf.org/html/rfc2373#section-2.5.2

Lars 1.0 Documentation, Release 1.0

basename
A string containing the basename (filename and extension) at the end of the path

ext
A string containing the filename’s extension (including the leading dot)

join(*paths)
Joins this path with the specified parts, returning a new Path (page 31) object.

Parameters *paths – The parts to append to this path

Returns A new Path (page 31) object representing the extended path

basename_no_ext
Returns a string containing basename with the extension removed (including the final dot separator).

dirs
Returns a sequence of the directories making up dirname (page 31)

isabs
Returns True if the path is absolute (dirname begins with one or more forward slashes).

class lars.datatypes.Time
Represents a time.

This type is returned by the time() (page 35) function and represents a time. A time object represents a
(local) time of day, independent of any particular day, and subject to adjustment via a tzinfo (page 32)
object.

Class attributes:

min
The earliest representable Time (page 32), time(0, 0, 0, 0).

max
The latest representable Time (page 32), time(23, 59, 59, 999999).

resolution
The smallest possible difference between non-equal Time (page 32) objects,
timedelta(microseconds=1), although note that arithmetic on Time (page 32) objects
is not supported.

Instance attributes (read-only):

hour
In range(24).

minute
In range(60).

second
In range(60).

microsecond
In range(1000000).

tzinfo
The object passed as the tzinfo argument to the Time (page 32) constructor, or None if none was
passed.

Supported operations:

• comparison of Time (page 32) to Time (page 32), where a is considered less than b when a precedes b
in time. If one comparand is naive and the other is aware, TypeError81 is raised. If both comparands
are aware, and have the same tzinfo (page 32) attribute, the common tzinfo (page 32) attribute is
ignored and the base times are compared. If both comparands are aware and have different tzinfo
(page 32) attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from

81 https://docs.python.org/3.5/library/exceptions.html#TypeError

32 Chapter 3. API Reference

https://docs.python.org/3.5/library/exceptions.html#TypeError

Lars 1.0 Documentation, Release 1.0

self.utcoffset()). In order to stop mixed-type comparisons from falling back to the default
comparison by object address, when a Time (page 32) object is compared to an object of a different
type, TypeError82 is raised unless the comparison is == or !=. The latter cases return False or
True, respectively.

• hash, use as dict key

• efficient pickling

• in Boolean contexts, a Time (page 32) object is considered to be true if and only if, after converting it
to minutes and subtracting utcoffset() (page 33) (or 0 if that’s None), the result is non-zero.

Instance methods:

replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a Time (page 32) with the same value, except for those attributes given new values by
whichever keyword arguments are specified. Note that tzinfo=None can be specified to create
a naive Time (page 32) from an aware Time (page 32), without conversion of the time data.

isoformat()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if
self.microsecond is 0, HH:MM:SS If utcoffset() (page 33) does not return None,
a 6-character string is appended, giving the UTC offset in (signed) hours and minutes:
HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0, HH:MM:SS+HH:MM

strftime(format)
Return a string representing the time, controlled by an explicit format string.

utcoffset()
If tzinfo (page 32) is None, returns None, else returns self.tzinfo.utcoffset(None),
and raises an exception if the latter doesn’t return None or a timedelta object representing a whole
number of minutes with magnitude less than one day.

dst()
If tzinfo (page 32) is None, returns None, else returns self.tzinfo.dst(None), and raises
an exception if the latter doesn’t return None, or a timedelta object representing a whole number
of minutes with magnitude less than one day.

tzname()
If tzinfo (page 32) is None, returns None, else returns self.tzinfo.tzname(None), or
raises an exception if the latter doesn’t return None or a string object.

class lars.datatypes.Url
Represents a URL.

This type is returned by the url() (page 36) function and represents the parts of the URL. You can obtain
the original URL as a string by requesting the string conversion of this class, for example:

>>> u = datatypes.url('http://foo/bar/baz')
>>> print u.scheme
http
>>> print u.hostname
foo
>>> print str(u)
http://foo/bar/baz

scheme
The scheme of the URL, before the first :

netloc
The “network location” of the URL, comprising the hostname and port (separated by a colon), and
historically the username and password (prefixed to the hostname and separated with an ampersand)

82 https://docs.python.org/3.5/library/exceptions.html#TypeError

3.6. lars.datatypes - Web Log Datatypes 33

https://docs.python.org/3.5/library/exceptions.html#TypeError

Lars 1.0 Documentation, Release 1.0

path_str
The path of the URL from the first slash after the network location

path
The path of the URL, parsed into a tuple which splits out the directory, filename, and extension:

>>> u = datatypes.url('foo/bar/baz.html')
>>> u.path
Path(dirname='foo/bar', basename='baz.html', ext='.html')
>>> u.path.isabs
False

params
The parameters of the URL

query_str
The query string of the URL from the first question-mark in the path

query
The query string, parsed into a mapping of keys to lists of values. For example:

>>> u = datatypes.url('foo/bar?a=1&a=2&b=3&c=')
>>> print u.query
{'a': ['1', '2'], 'c': [''], 'b': ['3']}
>>> print 'a' in u.query
True

fragment
The fragment of the URL from the last hash-mark to the end of the URL

Additionally, the following attributes can be used to separate out the various parts of the netloc (page 33)
attribute:

username
The username (historical, rare to see this used on the modern web)

password
The password (historical, almost unheard of on the modern web as it’s extremely insecure to include
credentials in the URL)

hostname
The hostname from the network location. This attribute returns a Hostname (page 25) object which
can be used to resolve the hostname into an IP address if required.

port
The optional network port

geturl()
Return the URL as a string string.

3.6.2 Functions

lars.datatypes.address(s)
Returns an IPv4Address (page 25), IPv6Address (page 28), IPv4Port (page 28), or IPv6Port
(page 31) instance for the given string.

Parameters s (str83) – The string containing the IP address to parse

Returns An IPv4Address (page 25), IPv4Port (page 28), IPv6Address (page 28), or
IPv6Port (page 31) instance

lars.datatypes.date(s, format=’%Y-%m-%d’)
Returns a Date (page 23) object for the given string.

83 https://docs.python.org/3.5/library/stdtypes.html#str

34 Chapter 3. API Reference

https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

Parameters

• s (str84) – The string containing the date to parse

• format (str85) – Optional string containing the date format to parse

Returns A Date (page 23) object representing the date

lars.datatypes.datetime(s, format=’%Y-%m-%d %H:%M:%S’)
Returns a DateTime (page 19) object for the given string.

Parameters

• s (str86) – The string containing the timestamp to parse

• format (str87) – Optional string containing the datetime format to parse

Returns A DateTime (page 19) object representing the timestamp

lars.datatypes.hostname(s)
Returns a Hostname (page 25), IPv4Address (page 25), or IPv6Address (page 28) object for the
given string depending on whether it represents an IP address or a hostname.

Parameters s (str88) – The string containing the hostname to parse

Returns A Hostname (page 25), IPv4Address (page 25), or IPv6Address (page 28)
instance

lars.datatypes.network(s)
Returns an IPv4Network (page 26) or IPv6Network (page 30) instance for the given string.

Parameters s (str89) – The string containing the IP network to parse

Returns An IPv4Network (page 26) or IPv6Network (page 30) instance

lars.datatypes.path(s)
Returns a Path (page 31) object for the given string.

Parameters s (str90) – The string containing the path to parse

Returns A Path (page 31) object representing the path

lars.datatypes.row(*args)
Returns a new tuple sub-class type containing the specified fields. For example:

NewRow = row('foo', 'bar', 'baz')
a_row = NewRow(1, 2, 3)
print(a_row.foo)

Parameters *args – The set of fields to include in the row definition.

Returns A tuple sub-class with the specified fields.

lars.datatypes.time(s, format=’%H:%M:%S’)
Returns a Time (page 32) object for the given string.

Parameters

• s (str91) – The string containing the time to parse

• format (str92) – Optional string containing the time format to parse

84 https://docs.python.org/3.5/library/stdtypes.html#str
85 https://docs.python.org/3.5/library/stdtypes.html#str
86 https://docs.python.org/3.5/library/stdtypes.html#str
87 https://docs.python.org/3.5/library/stdtypes.html#str
88 https://docs.python.org/3.5/library/stdtypes.html#str
89 https://docs.python.org/3.5/library/stdtypes.html#str
90 https://docs.python.org/3.5/library/stdtypes.html#str
91 https://docs.python.org/3.5/library/stdtypes.html#str
92 https://docs.python.org/3.5/library/stdtypes.html#str

3.6. lars.datatypes - Web Log Datatypes 35

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

Returns A Time (page 32) object representing the time

lars.datatypes.url(s)
Returns a Url (page 33) object for the given string.

Parameters s (str93) – The string containing the URL to parse

Returns A Url (page 33) tuple representing the URL

3.7 lars.progress - Rendering Progress

This module provides a wrapper that outputs simple progress meters to the command line based on source file
positions, or an arbitrary counter. The ProgressMeter (page 36) class is the major element that this module
provides.

3.7.1 Classes

class lars.progress.ProgressMeter(fileobj=None, value=0, total=None, max_wait=0.1,
stream=sys.stderr, mode=’w’, style=BarStyle,
hide_on_finish=True)

This class provides a simple means of rendering a progress meter at the command line. It can be driven
either with a file object (in which case the current position of the file is used) or with an arbitrary value
(which your code must provide). In the case of a file-object, the file must be seekable (so that the class can
determine the overall length of the file). If fileobj is not specified, then total must be specified.

The class is intended to be used as a context manager. Upon entry it will render an initial progress meter,
and will update it at reasonable intervals (dictated by the max_wait parameter) in response to calls to the
update() (page 36) method. When you leave the context, the progress meter will be automatically erased
if hide_on_finish is True (which it is by default).

Within the context, the hide() (page 36) and show() (page 36) methods can be used to temporarily hide
and show the progress meter (in order to display some status text, for example).

Parameters

• fileobj (file) – A file-like object from which to determine progress

• value (int94) – An arbitrary value from which to determine progress

• total (int95) – In the case that value is set, this must be set to the maximum value
that value will take

• max_wait (float96) – The minimum length of time that must elapse before a screen
update is permitted

• stream (file) – The stream object that output should be written to, defaults to stderr

• style – A reference to a class which will be used to render the progress meter, defaults
to BarStyle (page 37)

• hide_on_finish (bool97) – If True (the default), the progress meter will be erased
when the context exits

hide()
Hide the progress bar from the console (or whatever the output stream is connected to).

show()
Show the progress bar on the console (or whatever the output stream is connected to).

93 https://docs.python.org/3.5/library/stdtypes.html#str
94 https://docs.python.org/3.5/library/functions.html#int
95 https://docs.python.org/3.5/library/functions.html#int
96 https://docs.python.org/3.5/library/functions.html#float
97 https://docs.python.org/3.5/library/functions.html#bool

36 Chapter 3. API Reference

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool

Lars 1.0 Documentation, Release 1.0

update(value=None)
Update the progress bar to position value (which must be less than the total value passed to the con-
structor).

class lars.progress.SpinnerStyle(meter)
A ProgressMeter (page 36) style that renders a simple spinning line.

class lars.progress.PercentageStyle(meter)
A ProgressMeter (page 36) style that renders a simple percentage counter.

class lars.progress.EllipsisStyle(meter)
A ProgressMeter (page 36) style that renders an looping series of dots.

class lars.progress.BarStyle(meter)
A ProgressMeter (page 36) style that renders a full progress bar and percentage.

class lars.progress.HashStyle(meter)
A ProgressMeter (page 36) style for those that remember FTP’s hash command!

3.7.2 Examples

The most basic usage of this class is as follows:

import io
from lars import iis, csv, progress

with io.open('logs\iis.txt', 'rb') as infile, \
io.open('iis.csv', 'wb') as outfile, \
progress.ProgressMeter(infile) as meter, \
iis.IISSource(infile) as source, \
csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)
meter.update()

Note that you do not need to worry about the detrimental performance effects of calling update() (page 36)
too often; the class ensures that repeated calls are ignored until max_wait seconds have elapsed since the last
update.

Alternatively, if you wish to update according to, say, the number of files to process you could use something
like the following example (which also demonstrates temporarily hiding the progress meter in order to show the
current filename):

import os
import io
from lars import iis, csv, progress
from pathlib import Path

files = list(Path('.').iterdir())
with progress.ProgressMeter(total=len(files),

style=progress.BarStyle) as meter:
for file_num, file_name in enumerate(files):

meter.hide()
print "Processing %s" % file_name
meter.show()
with file_name.open('rb') as infile, \

file_name.with_suffix('.csv').open('wb') as outfile, \
iis.IISSource(infile) as source, \
csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)

meter.update(file_num)

3.7. lars.progress - Rendering Progress 37

Lars 1.0 Documentation, Release 1.0

3.8 lars.dns - DNS Resolution

This module provides a couple of trivial DNS resolution functions, enhanced with LRU caches. Most users should
never need to access these functions directly. Instead, use the address (page 25) and hostname (page 26)
properties of relevant objects.

3.8.1 Functions

lars.dns.from_address(address)
Reverse resolve an address to a hostname.

Given a string containing an IPv4 or IPv6 address, this functions returns a hostname associated with the
address, using an LRU cache to speed up repeat queries. If the address does not reverse, the function returns
the original address.

Parameters address (str98) – The address to resolve to a hostname

Returns The resolved hostname

lars.dns.to_address(hostname, family=<AddressFamily.AF_UNSPEC: 0>, sock-
type=<SocketKind.SOCK_STREAM: 1>)

Resolve a hostname to an address, preferring IPv4 addresses.

Given a string containing a DNS hostname, this function resolves the hostname to an address, using an LRU
cache to speed up repeat queries. The function prefers IPv4 addresses, but will return IPv6 addresses if no
IPv4 addresses are present in the result from getaddrinfo. If the hostname does not resolve, the function
returns None rather than raise an exception (this is preferable as it provides a negative lookup cache).

Parameters hostname (str99) – The hostname to resolve to an address

Returns The resolved address

3.9 lars.cache - Cache Decorators

This module provides a backport of the Python 3.3 LRU caching decorator. Users should never need to access
this module directly; its contents are solely present to ensure DNS lookups can be cached under a Python 2.7
environment.

Source adapted from Raymond Hettinger’s recipe100 licensed under the MIT license101.

3.9.1 Functions

lars.cache.lru_cache(maxsize=100, typed=False)
Least-recently-used cache decorator.

If maxsize is set to None, the LRU features are disabled and the cache can grow without bound.

If typed is True, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be
treated as distinct calls with distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (hits, misses, maxsize, currsize) with f.cache_info(). Clear the cache
and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__.

98 https://docs.python.org/3.5/library/stdtypes.html#str
99 https://docs.python.org/3.5/library/stdtypes.html#str

100 http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
101 http://opensource.org/licenses/MIT

38 Chapter 3. API Reference

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
http://opensource.org/licenses/MIT

Lars 1.0 Documentation, Release 1.0

3.10 lars.exc - Base Exceptions

Defines base exception and warnings types for the package.

3.10.1 Exceptions

exception lars.exc.LarsError
Base class for all errors generated by the lars package. This exists purely for ease of filtering / catching all
such errors.

exception lars.exc.LarsWarning
Base class for all warnings generated by the lars package. This exists purely for ease of filtering / catching
all such warnings.

3.10. lars.exc - Base Exceptions 39

Lars 1.0 Documentation, Release 1.0

40 Chapter 3. API Reference

CHAPTER 4

Change log

4.1 Release 1.0 (2017-01-04)

• Permit NULL values in first row when creating SQL tables (but warn as this is not encouraged)

• Permit sources and targets to be used outside of context handlers (makes experimentation in the REPL a bit
nicer)

• Don’t warn when request is NULL in Apache log sources (in certain configurations this is common when
stringent timeouts are set)

• Fixed incorrect generation of Oracle multi-row INSERT statements

• Fixed operation of SQL target when row doesn’t cover complete set of target table rows

4.2 Release 0.3 (2014-09-07)

• Implemented Python 3 compatibility (specifically 3.2 or above) and added debian packaging for Python 3
and docs

4.3 Release 0.2 (2013-07-28)

• Added ISP and organisation lookups to geoip module

• Added multi-row insertion support to the sql module

• Added Oracle specific target in the sql module

• Fixed the setup.py script (missing MANIFEST.in meant utils.py was excluded which setup.py relies upon)

• Fixed test coverage for the progress module

4.4 Release 0.1 (2013-06-09)

• Initial release

41

Lars 1.0 Documentation, Release 1.0

42 Chapter 4. Change log

CHAPTER 5

License

Copyright © 2013-2017, Dave Jones102

Copyright © 2013, Mime Consulting Ltd.103

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.1 DateTime, Date, and Time documentation license

The documentation for the DateTime (page 19), Date (page 23), and Time (page 32) classes in this module
are derived from the documentation sources for the datetime, date, and time classes in Python 2.7.4 and thus are
subject to the following copyright and license:

Copyright (c) 1990-2013, Python Software Foundation

5.1.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.7.4 software in source or binary form
and its associated documentation.

102 dave@waveform.org.uk
103 info@mimeconsulting.co.uk

43

mailto:dave@waveform.org.uk
mailto:info@mimeconsulting.co.uk

Lars 1.0 Documentation, Release 1.0

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2013 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.4 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.4.

4. PSF is making Python 2.7.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.7.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.7.4, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

5.2 _strptime license

The strptime and timezone modules are derived from the _strptime and datetime modules in Python 3.2
respectively, and therefore are subject to the following license:

Copyright (c) 1990-2013, Python Software Foundation

5.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 3.2.3 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 3.2.3 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2012 Python Software
Foundation; All Rights Reserved” are retained in Python 3.2.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.2.3 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 3.2.3.

4. PSF is making Python 3.2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
3.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

44 Chapter 5. License

Lars 1.0 Documentation, Release 1.0

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2.3 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2.3, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 3.2.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

5.3 IPNetwork & IPAddress documentation license

The documentation for the IPv4Address (page 25), IPv4Network (page 26), IPv6Address (page 28),
and IPv6Network (page 30) classes in lars are derived from the ipaddress104 documentation sources which are
subject to the following copyright and are licensed to the PSF under the contributor agreement which makes them
subject to the PSF 3.2.3 license from the section above:

Copyright (c) 2007 Google Inc.

104 http://code.google.com/p/ipaddr-py/

5.3. IPNetwork & IPAddress documentation license 45

http://code.google.com/p/ipaddr-py/

Lars 1.0 Documentation, Release 1.0

46 Chapter 5. License

Python Module Index

l
lars, 3
lars.apache, 7
lars.cache, 38
lars.csv, 12
lars.datatypes, 19
lars.dns, 38
lars.exc, 39
lars.geoip, 17
lars.iis, 10
lars.progress, 36
lars.sql, 13

47

Lars 1.0 Documentation, Release 1.0

48 Python Module Index

Index

A
address (lars.datatypes.Hostname attribute), 25
address() (in module lars.datatypes), 34
address_exclude() (lars.datatypes.IPv4Network

method), 26
address_exclude() (lars.datatypes.IPv6Network

method), 30
ApacheError (class in lars.apache), 9
ApacheSource (class in lars.apache), 7
ApacheWarning, 9
astimezone() (lars.datatypes.DateTime method),

22

B
BarStyle (class in lars.progress), 37
basename (lars.datatypes.Path attribute), 31
basename_no_ext (lars.datatypes.Path attribute),

32

C
city (lars.datatypes.IPv4Address attribute), 26
city (lars.datatypes.IPv6Address attribute), 29
city_by_addr() (in module lars.geoip), 18
close() (lars.apache.ApacheSource method), 9
close() (lars.csv.CSVTarget method), 12
close() (lars.sql.SQLTarget method), 15
combine() (lars.datatypes.DateTime class method),

20
COMBINED (in module lars.apache), 9
commit (lars.sql.SQLTarget attribute), 15
COMMON (in module lars.apache), 9
COMMON_VHOST (in module lars.apache), 9
compare_networks()

(lars.datatypes.IPv4Network method),
27

compare_networks()
(lars.datatypes.IPv6Network method),
30

compressed (lars.datatypes.IPv4Address attribute),
25

compressed (lars.datatypes.IPv6Address attribute),
28

coords (lars.datatypes.IPv4Address attribute), 26
coords (lars.datatypes.IPv6Address attribute), 29

coords_by_addr() (in module lars.geoip), 18
count (lars.apache.ApacheSource attribute), 8
count (lars.iis.IISSource attribute), 10
count (lars.sql.SQLTarget attribute), 15
country (lars.datatypes.IPv4Address attribute), 26
country (lars.datatypes.IPv6Address attribute), 29
country_code_by_addr() (in module

lars.geoip), 17
create_table (lars.sql.SQLTarget attribute), 15
CSV_DIALECT (class in lars.csv), 12
CSVTarget (class in lars.csv), 12

D
Date (class in lars.datatypes), 23
date (lars.iis.IISSource attribute), 10
date() (in module lars.datatypes), 34
date() (lars.datatypes.DateTime method), 21
DateTime (class in lars.datatypes), 19
datetime() (in module lars.datatypes), 35
day (lars.datatypes.Date attribute), 24
day (lars.datatypes.DateTime attribute), 20
dirname (lars.datatypes.Path attribute), 31
dirs (lars.datatypes.Path attribute), 32
drop_table (lars.sql.SQLTarget attribute), 15
dst() (lars.datatypes.DateTime method), 22
dst() (lars.datatypes.Time method), 33

E
EllipsisStyle (class in lars.progress), 37
exploded (lars.datatypes.IPv4Address attribute), 25
exploded (lars.datatypes.IPv6Address attribute), 28
ext (lars.datatypes.Path attribute), 32

F
fields (lars.iis.IISSource attribute), 10
finish (lars.iis.IISSource attribute), 10
fragment (lars.datatypes.Url attribute), 34
from_address() (in module lars.dns), 38
fromtimestamp() (lars.datatypes.Date class

method), 23
fromtimestamp() (lars.datatypes.DateTime class

method), 19

49

Lars 1.0 Documentation, Release 1.0

G
geturl() (lars.datatypes.Url method), 34

H
HashStyle (class in lars.progress), 37
hide() (lars.progress.ProgressMeter method), 36
Hostname (class in lars.datatypes), 25
hostname (lars.datatypes.IPv4Address attribute), 26
hostname (lars.datatypes.IPv6Address attribute), 29
hostname (lars.datatypes.Url attribute), 34
hostname() (in module lars.datatypes), 35
hosts() (lars.datatypes.IPv4Network method), 27
hosts() (lars.datatypes.IPv6Network method), 30
hour (lars.datatypes.DateTime attribute), 20
hour (lars.datatypes.Time attribute), 32

I
ignore_drop_errors (lars.sql.SQLTarget at-

tribute), 15
IISDirectiveError, 11
IISError (class in lars.iis), 11
IISFieldsError, 11
IISSource (class in lars.iis), 10
IISVersionError, 11
IISWarning, 11
init_databases() (in module lars.geoip), 17
insert (lars.sql.SQLTarget attribute), 15
ipv4_mapped (lars.datatypes.IPv6Address at-

tribute), 28
IPv4Address (class in lars.datatypes), 25
IPv4Network (class in lars.datatypes), 26
IPv4Port (class in lars.datatypes), 28
IPv6Address (class in lars.datatypes), 28
IPv6Network (class in lars.datatypes), 30
IPv6Port (class in lars.datatypes), 31
is_link_local (lars.datatypes.IPv4Address

attribute), 25
is_link_local (lars.datatypes.IPv4Network at-

tribute), 28
is_link_local (lars.datatypes.IPv6Address

attribute), 28
is_link_local (lars.datatypes.IPv6Network at-

tribute), 31
is_loopback (lars.datatypes.IPv4Address at-

tribute), 25
is_loopback (lars.datatypes.IPv4Network at-

tribute), 28
is_loopback (lars.datatypes.IPv6Address at-

tribute), 29
is_loopback (lars.datatypes.IPv6Network at-

tribute), 31
is_multicast (lars.datatypes.IPv4Address at-

tribute), 26
is_multicast (lars.datatypes.IPv4Network at-

tribute), 28
is_multicast (lars.datatypes.IPv6Address at-

tribute), 29

is_multicast (lars.datatypes.IPv6Network at-
tribute), 31

is_private (lars.datatypes.IPv4Address attribute),
26

is_private (lars.datatypes.IPv4Network attribute),
28

is_private (lars.datatypes.IPv6Address attribute),
29

is_private (lars.datatypes.IPv6Network attribute),
31

is_reserved (lars.datatypes.IPv4Address at-
tribute), 26

is_reserved (lars.datatypes.IPv4Network at-
tribute), 28

is_reserved (lars.datatypes.IPv6Address at-
tribute), 29

is_reserved (lars.datatypes.IPv6Network at-
tribute), 31

is_site_local (lars.datatypes.IPv6Address
attribute), 29

is_unspecified (lars.datatypes.IPv4Address at-
tribute), 26

is_unspecified (lars.datatypes.IPv4Network at-
tribute), 28

is_unspecified (lars.datatypes.IPv6Address at-
tribute), 29

is_unspecified (lars.datatypes.IPv6Network at-
tribute), 31

isabs (lars.datatypes.Path attribute), 32
isocalendar() (lars.datatypes.Date method), 24
isocalendar() (lars.datatypes.DateTime method),

23
isoformat() (lars.datatypes.Date method), 25
isoformat() (lars.datatypes.DateTime method), 23
isoformat() (lars.datatypes.Time method), 33
isoweekday() (lars.datatypes.Date method), 24
isoweekday() (lars.datatypes.DateTime method),

22
isp (lars.datatypes.IPv4Address attribute), 26
isp (lars.datatypes.IPv6Address attribute), 29
isp_by_addr() (in module lars.geoip), 18

J
join() (lars.datatypes.Path method), 32

L
lars (module), 3
lars.apache (module), 7
lars.cache (module), 38
lars.csv (module), 12
lars.datatypes (module), 19
lars.dns (module), 38
lars.exc (module), 39
lars.geoip (module), 17
lars.iis (module), 10
lars.progress (module), 36
lars.sql (module), 13
LarsError, 39

50 Index

Lars 1.0 Documentation, Release 1.0

LarsWarning, 39
log_format (lars.apache.ApacheSource attribute), 9
lru_cache() (in module lars.cache), 38

M
max (lars.datatypes.Date attribute), 23
max (lars.datatypes.DateTime attribute), 20
max (lars.datatypes.Time attribute), 32
microsecond (lars.datatypes.DateTime attribute),

20
microsecond (lars.datatypes.Time attribute), 32
min (lars.datatypes.Date attribute), 23
min (lars.datatypes.DateTime attribute), 20
min (lars.datatypes.Time attribute), 32
minute (lars.datatypes.DateTime attribute), 20
minute (lars.datatypes.Time attribute), 32
month (lars.datatypes.Date attribute), 23
month (lars.datatypes.DateTime attribute), 20

N
netloc (lars.datatypes.Url attribute), 33
network() (in module lars.datatypes), 35
now() (lars.datatypes.DateTime class method), 19

O
OracleTarget (class in lars.sql), 16
org (lars.datatypes.IPv4Address attribute), 26
org (lars.datatypes.IPv6Address attribute), 29
org_by_addr() (in module lars.geoip), 18
overlaps() (lars.datatypes.IPv4Network method),

27
overlaps() (lars.datatypes.IPv6Network method),

30

P
packed (lars.datatypes.IPv4Address attribute), 26
packed (lars.datatypes.IPv6Address attribute), 29
params (lars.datatypes.Url attribute), 34
password (lars.datatypes.Url attribute), 34
Path (class in lars.datatypes), 31
path (lars.datatypes.Url attribute), 34
path() (in module lars.datatypes), 35
path_str (lars.datatypes.Url attribute), 33
PercentageStyle (class in lars.progress), 37
port (lars.datatypes.IPv4Port attribute), 28
port (lars.datatypes.IPv6Port attribute), 31
port (lars.datatypes.Url attribute), 34
ProgressMeter (class in lars.progress), 36

Q
query (lars.datatypes.Url attribute), 34
query_str (lars.datatypes.Url attribute), 34
QUOTE_ALL (in module lars.csv), 13
QUOTE_MINIMAL (in module lars.csv), 13
QUOTE_NONE (in module lars.csv), 13
QUOTE_NONNUMERIC (in module lars.csv), 13

R
REFERER (in module lars.apache), 9
region (lars.datatypes.IPv4Address attribute), 26
region (lars.datatypes.IPv6Address attribute), 30
region_by_addr() (in module lars.geoip), 18
remark (lars.iis.IISSource attribute), 10
replace() (lars.datatypes.Date method), 24
replace() (lars.datatypes.DateTime method), 22
replace() (lars.datatypes.Time method), 33
resolution (lars.datatypes.Date attribute), 23
resolution (lars.datatypes.DateTime attribute), 20
resolution (lars.datatypes.Time attribute), 32
row() (in module lars.datatypes), 35

S
scheme (lars.datatypes.Url attribute), 33
second (lars.datatypes.DateTime attribute), 20
second (lars.datatypes.Time attribute), 32
show() (lars.progress.ProgressMeter method), 36
sixtofour (lars.datatypes.IPv6Address attribute),

29
software (lars.iis.IISSource attribute), 10
source (lars.apache.ApacheSource attribute), 8
SpinnerStyle (class in lars.progress), 37
SQLError, 16
SQLTarget (class in lars.sql), 14
SQLWarning, 16
start (lars.iis.IISSource attribute), 10
strftime() (lars.datatypes.Date method), 25
strftime() (lars.datatypes.Time method), 33
strptime() (lars.datatypes.DateTime class

method), 20
subnets() (lars.datatypes.IPv4Network method), 27
subnets() (lars.datatypes.IPv6Network method), 30
supernet() (lars.datatypes.IPv4Network method),

27
supernet() (lars.datatypes.IPv6Network method),

30

T
table (lars.sql.SQLTarget attribute), 15
teredo (lars.datatypes.IPv6Address attribute), 29
Time (class in lars.datatypes), 32
time() (in module lars.datatypes), 35
time() (lars.datatypes.DateTime method), 22
timetz() (lars.datatypes.DateTime method), 22
to_address() (in module lars.dns), 38
today() (lars.datatypes.Date class method), 23
today() (lars.datatypes.DateTime class method), 19
TSV_DIALECT (class in lars.csv), 13
tzinfo (lars.datatypes.DateTime attribute), 20
tzinfo (lars.datatypes.Time attribute), 32
tzname() (lars.datatypes.DateTime method), 22
tzname() (lars.datatypes.Time method), 33

U
update() (lars.progress.ProgressMeter method), 36
Url (class in lars.datatypes), 33

Index 51

Lars 1.0 Documentation, Release 1.0

url() (in module lars.datatypes), 36
USER_AGENT (in module lars.apache), 9
username (lars.datatypes.Url attribute), 34
utcfromtimestamp() (lars.datatypes.DateTime

class method), 20
utcnow() (lars.datatypes.DateTime class method),

19
utcoffset() (lars.datatypes.DateTime method), 22
utcoffset() (lars.datatypes.Time method), 33

V
version (lars.iis.IISSource attribute), 10

W
weekday() (lars.datatypes.Date method), 24
weekday() (lars.datatypes.DateTime method), 22
write() (lars.csv.CSVTarget method), 12
write() (lars.sql.SQLTarget method), 15

Y
year (lars.datatypes.Date attribute), 23
year (lars.datatypes.DateTime attribute), 20

52 Index

	Install
	Pre-requisites
	Ubuntu Linux
	Other Platforms

	Introduction
	Filtering rows
	Manipulating row content

	API Reference
	lars.apache - Reading Apache Logs
	lars.iis - Reading IIS Logs
	lars.csv - Writing CSV Files
	lars.sql - Direct Database Output
	lars.geoip - GeoIP Database Access
	lars.datatypes - Web Log Datatypes
	lars.progress - Rendering Progress
	lars.dns - DNS Resolution
	lars.cache - Cache Decorators
	lars.exc - Base Exceptions

	Change log
	Release 1.0 (2017-01-04)
	Release 0.3 (2014-09-07)
	Release 0.2 (2013-07-28)
	Release 0.1 (2013-06-09)

	License
	DateTime, Date, and Time documentation license
	_strptime license
	IPNetwork & IPAddress documentation license

	Python Module Index
	Index

