
Lars 1.0 Documentation
Release 1.0

Dave Jones

Jan 04, 2018

Contents

1 Install 1
1.1 Pre-requisites . 1
1.2 Ubuntu Linux . 1
1.3 Other Platforms . 1

2 Introduction 3
2.1 Filtering rows . 3
2.2 Manipulating row content . 5

3 API Reference 7
3.1 lars.apache - Reading Apache Logs . 7
3.2 lars.iis - Reading IIS Logs . 7
3.3 lars.csv - Writing CSV Files . 7
3.4 lars.sql - Direct Database Output . 9
3.5 lars.geoip - GeoIP Database Access . 9
3.6 lars.datatypes - Web Log Datatypes . 9
3.7 lars.progress - Rendering Progress . 9
3.8 lars.dns - DNS Resolution . 11
3.9 lars.cache - Cache Decorators . 12
3.10 lars.exc - Base Exceptions . 12

4 Change log 13
4.1 Release 1.0 (2017-01-04) . 13
4.2 Release 0.3 (2014-09-07) . 13
4.3 Release 0.2 (2013-07-28) . 13
4.4 Release 0.1 (2013-06-09) . 13

5 License 15
5.1 DateTime, Date, and Time documentation license . 15
5.2 _strptime license . 16
5.3 IPNetwork & IPAddress documentation license . 17

Python Module Index 19

i

ii

CHAPTER 1

Install

lars is distributed in several formats. The following sections detail installation on a variety of platforms.

1.1 Pre-requisites

Where possible, installation methods will automatically handle all mandatory pre-requisites. However, if your
particular installation method does not handle dependency installation, then you will need to install the following
Python packages manually:

• pygeoip1 - The pure Python API for MaxMind GeoIP databases

• ipaddress2 - Google’s IPv4 and IPv6 address handling library. This is included as standard in Python 3.3
and above.

1.2 Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the Waveform PPA3 as follows (this also ensures you are kept up
to date as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-lars

1.3 Other Platforms

If your platform is not covered by one of the sections above, lars is available from PyPI and can therefore be
installed with the Python setuptools easy_install tool:

$ easy_install lars

1 https://pypi.python.org/pypi/pygeoip/
2 https://pypi.python.org/pypi/ipaddress/
3 https://launchpad.net/~waveform/+archive/ppa

1

https://pypi.python.org/pypi/pygeoip/
https://pypi.python.org/pypi/ipaddress/
https://launchpad.net/~waveform/+archive/ppa

Lars 1.0 Documentation, Release 1.0

Or the (now deprecated) distribute pip tool:

$ pip install lars

If you do not have either of these tools available, please install the Python setuptools4 package first.

4 https://pypi.python.org/pypi/setuptools/

2 Chapter 1. Install

https://pypi.python.org/pypi/setuptools/

CHAPTER 2

Introduction

A typical lars script opens some log source, typically a file, and uses the source and target wrappers provided by
lars to convert the log entries into some other format (potentially filtering and/or modifying the entries along the
way). A trivial script to convert IIS W3C style log entries into a CSV file is shown below:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

target.write(row)

Going through this section by section we can see the following:

1. The first couple of lines import the necessary modules that we’ll need; the standard Python io5 module for
opening files, and the iis and csv6 modules from lars for converting the data.

2. Using io.open()7 we open the input file (with mode 'r' for reading) and the output file (with mode
'wb' for creating a new file and writing (binary mode) to it)

3. We wrap infile (the input file) with IISSource to parse the input file, and outfile (the output file)
with CSVTarget (page 7) to format the output file.

4. Finally, we use a simple loop to iterate over the rows in the source file, and the write() (page 8) method
to write them to the target.

This is the basic structure of most lars scripts. Most extra lines for filtering and manipulating rows appear within
the loop at the end of the file, although sometimes extra module configuration lines are required at the top.

2.1 Filtering rows

The row object declared in the loop has attributes named after the columns of the source (with characters that
cannot appear in Python identifiers replaced with underscores). To see the structure of a row you can simply print
one and then terminate the loop:

5 https://docs.python.org/3.5/library/io.html#module-io
6 https://docs.python.org/3.5/library/csv.html#module-csv
7 https://docs.python.org/3.5/library/io.html#io.open

3

https://docs.python.org/3.5/library/io.html#module-io
https://docs.python.org/3.5/library/csv.html#module-csv
https://docs.python.org/3.5/library/io.html#io.open

Lars 1.0 Documentation, Release 1.0

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

print(row)
break

Given the following input file (long lines indented for readability):

#Software: Microsoft Internet Information Services 6.0
#Version: 1.0
#Date: 2002-05-24 20:18:01
#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem

cs-uri-query sc-status sc-bytes cs-bytes time-taken cs(User-Agent)
cs(Referrer)

2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm -
200 7930 248 31
Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server)
http://64.224.24.114/

This will produce this output on the command line:

Row(date=Date(2002, 5, 24), time=Time(20, 18, 1),
c_ip=IPv4Address(u'172.224.24.114'), cs_username=None,
s_ip=IPv4Address(u'206.73.118.24'), s_port=80, cs_method=u'GET',
cs_uri_stem=Url(scheme='', netloc='', path=u'/Default.htm', params='',
query_str='', fragment=''), cs_uri_query=None, sc_status=200,
sc_bytes=7930, cs_bytes=248, time_taken=31.0,
cs_User_Agent=u'Mozilla/4.0 (compatible; MSIE 5.01; Windows 2000
Server)', cs_Referrer=Url(scheme=u'http', netloc=u'64.224.24.114',
path=u'/', params='', query_str='', fragment=''))

From this one can see that field names like c-ip have been converted into c_ip (- is an illegal character in
Python identifiers). Furthermore it is apparent that instead of simple strings being extracted, the data has been
converted into a variety of appropriate datatypes (Date for the date field, Url for the cs-uri-stem field,
and so on). This significantly aids in filtering rows based upon sub-attributes of the extracted data.

For example, to filter on the year of the date:

if row.date.year == 2002:
target.write(row)

Alternatively, you could filter on whether or not the client IP belongs in a particular network:

if row.c_ip in datatypes.network('172.0.0.0/8'):
target.write(row)

Or use Python’s string methods8 to filter on any string:

if row.cs_User_Agent.startswith('Mozilla/'):
target.write(row)

Or any combination of the above:

if row.date.year == 2002 and 'MSIE' in row.cs_User_Agent:
target.write(row)

8 http://docs.python.org/2/library/stdtypes.html#string-methods

4 Chapter 2. Introduction

http://docs.python.org/2/library/stdtypes.html#string-methods

Lars 1.0 Documentation, Release 1.0

2.2 Manipulating row content

If you wish to modify the output structure,the simplest method is to declare the row structure you want at the top
of the file (using the row() function) and then construct rows with the new structure in the loop (using the result
of the function):

import io
from lars import datatypes, iis, csv

NewRow = datatypes.row('date', 'time', 'client', 'url')

with io.open('webserver.log', 'r') as infile, \
io.open('output.csv', 'wb') as outfile:

with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
for row in source:

new_row = NewRow(row.date, row.time, row.c_ip, row.cs_uri_stem)
target.write(new_row)

There is no need to convert column data back to strings for output; all datatypes produced by lars source adapters
have built-in string conversions which all target adapters know to use.

2.2. Manipulating row content 5

Lars 1.0 Documentation, Release 1.0

6 Chapter 2. Introduction

CHAPTER 3

API Reference

The framework is designed in a modular fashion with a separate module for each log input format, each data
output format, a few auxilliary modules for the datatypes exposed by the framework and their functionality. Where
possible, standards dictating formats are linked in the API reference.

Each module comes with documentation including examples of usage. The best way to learn the framework is to
peruse the API reference and try out the examples, modifying them to suit your purposes.

3.1 lars.apache - Reading Apache Logs

3.2 lars.iis - Reading IIS Logs

3.3 lars.csv - Writing CSV Files

This module provides a target wrapper for CSV (Comma Separated Values) formatted text files, which are typically
used as a generic source format for bulk loading databases.

The CSVTarget (page 7) class is the major element that this module provides; it is a standard target class (a
context manager with a write() (page 8) method that accepts row tuples).

3.3.1 Classes

class lars.csv.CSVTarget(fileobj, header=False, dialect=CSV_DIALECT, encoding=’utf-8’,
**kwargs)

Wraps a stream to format rows as CSV (Comma Separated Values).

This wrapper provides a simple write() (page 8) method which can be used to format row tuples as
comma separated values in a variety of common dialects. The dialect defaults to CSV_DIALECT (page 8)
which produces a typical CSV file compatible with the vast majority of products.

If you desire a different output format you can either specify a different value for the dialect parameter, or
if you only wish to use a minimal modification of the dialect you can override its attributes with keyword
arguments. For example:

CSVTarget(outfile, dialect=CSV_DIALECT, lineterminator='\n')

7

Lars 1.0 Documentation, Release 1.0

The encoding parameter controls the character set used in the output. This defaults to UTF-8 which is a
sensible default for most modern systems, but is a multi-byte encoding which some legacy systems (notably
mainframes) may have troubles with. In this case you can either select a single byte encoding like ISO-
8859-1 or even EBCDIC. See Python standard encodings9 for a full list of supported encodings.

Warning: The file that you wrap with CSVTarget (page 7) must be opened in binary mode ('wb')
partly because the dialect dictates the line terminator that is used, and partly because the class handles
its own character encoding.

close()
Closes the CSV output. Further calls to write() (page 8) are not permitted after calling this method.

write(row)
Write the specified row (a tuple of values) to the wrapped output. All provided rows must have the
same number of elements. There is no need to convert elements of the tuple to str10; this will be
handled implicitly.

class lars.csv.CSV_DIALECT
This is the default dialect used by the CSVTarget (page 7) class which has the following attributes:

Attribute Value
delimiter ',' (comma)
quotechar '"' (double-quote)
quoting QUOTE_MINIMAL (page 8)
lineterminator '\r\n' (DOS line breaks)
doublequote True
escapechar None

This dialect is compatible with Microsoft Excel and the vast majority of of other products which accept CSV
as an input format. However, please note that some UNIX based database products require UNIX style line
endings ('\n') in which case you may wish to override the lineterminator attribute (see CSVTarget
(page 7) for more information).

class lars.csv.TSV_DIALECT
This is a dialect which produces tab-delimited files, another common data exchange format also supported
by Microsoft Excel and numerous database products. This dialect has the following properties:

Attribute Value
delimiter '\t' (tab)
quotechar '"' (double-quote)
quoting QUOTE_MINIMAL (page 8)
lineterminator '\r\n' (DOS line breaks)
doublequote True
escapechar None

3.3.2 Data

lars.csv.QUOTE_NONE
This value indicates that no values should ever be quoted, even if they contain the delimiter character. In this
case, any delimiter characters appearing the data will be preceded by the dialect’s escapechar which should
be set to an appropriate value. If escapechar is not set (None) an exception will be raised if any character
that require quoting are encountered.

9 http://docs.python.org/2/library/codecs.html#standard-encodings
10 https://docs.python.org/3.5/library/stdtypes.html#str

8 Chapter 3. API Reference

http://docs.python.org/2/library/codecs.html#standard-encodings
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

lars.csv.QUOTE_MINIMAL
This is the default quoting mode. In this mode the writer will only quote those values that contain the
delimiter or quotechar characters, or any of the characters in lineterminator.

lars.csv.QUOTE_NONNUMERIC
This value tells the writer to quote all numeric (int and float) values.

lars.csv.QUOTE_ALL
This value simply tells the writer to quote all values written.

3.3.3 Examples

A typical example of working with the class is shown below:

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
with io.open('apache.csv', 'wb') as outfile:

with apache.ApacheSource(infile) as source:
with csv.CSVTarget(outfile, lineterminator='\n') as target:

for row in source:
target.write(row)

3.4 lars.sql - Direct Database Output

3.5 lars.geoip - GeoIP Database Access

3.6 lars.datatypes - Web Log Datatypes

3.7 lars.progress - Rendering Progress

This module provides a wrapper that outputs simple progress meters to the command line based on source file
positions, or an arbitrary counter. The ProgressMeter (page 9) class is the major element that this module
provides.

3.7.1 Classes

class lars.progress.ProgressMeter(fileobj=None, value=0, total=None, max_wait=0.1,
stream=sys.stderr, mode=’w’, style=BarStyle,
hide_on_finish=True)

This class provides a simple means of rendering a progress meter at the command line. It can be driven
either with a file object (in which case the current position of the file is used) or with an arbitrary value
(which your code must provide). In the case of a file-object, the file must be seekable (so that the class can
determine the overall length of the file). If fileobj is not specified, then total must be specified.

The class is intended to be used as a context manager. Upon entry it will render an initial progress meter,
and will update it at reasonable intervals (dictated by the max_wait parameter) in response to calls to the
update() (page 10) method. When you leave the context, the progress meter will be automatically erased
if hide_on_finish is True (which it is by default).

Within the context, the hide() (page 10) and show() (page 10) methods can be used to temporarily hide
and show the progress meter (in order to display some status text, for example).

Parameters

3.4. lars.sql - Direct Database Output 9

Lars 1.0 Documentation, Release 1.0

• fileobj (file) – A file-like object from which to determine progress

• value (int11) – An arbitrary value from which to determine progress

• total (int12) – In the case that value is set, this must be set to the maximum value
that value will take

• max_wait (float13) – The minimum length of time that must elapse before a screen
update is permitted

• stream (file) – The stream object that output should be written to, defaults to stderr

• style – A reference to a class which will be used to render the progress meter, defaults
to BarStyle (page 10)

• hide_on_finish (bool14) – If True (the default), the progress meter will be erased
when the context exits

hide()
Hide the progress bar from the console (or whatever the output stream is connected to).

show()
Show the progress bar on the console (or whatever the output stream is connected to).

update(value=None)
Update the progress bar to position value (which must be less than the total value passed to the con-
structor).

class lars.progress.SpinnerStyle(meter)
A ProgressMeter (page 9) style that renders a simple spinning line.

class lars.progress.PercentageStyle(meter)
A ProgressMeter (page 9) style that renders a simple percentage counter.

class lars.progress.EllipsisStyle(meter)
A ProgressMeter (page 9) style that renders an looping series of dots.

class lars.progress.BarStyle(meter)
A ProgressMeter (page 9) style that renders a full progress bar and percentage.

class lars.progress.HashStyle(meter)
A ProgressMeter (page 9) style for those that remember FTP’s hash command!

3.7.2 Examples

The most basic usage of this class is as follows:

import io
from lars import iis, csv, progress

with io.open('logs\iis.txt', 'rb') as infile, \
io.open('iis.csv', 'wb') as outfile, \
progress.ProgressMeter(infile) as meter, \
iis.IISSource(infile) as source, \
csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)
meter.update()

11 https://docs.python.org/3.5/library/functions.html#int
12 https://docs.python.org/3.5/library/functions.html#int
13 https://docs.python.org/3.5/library/functions.html#float
14 https://docs.python.org/3.5/library/functions.html#bool

10 Chapter 3. API Reference

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool

Lars 1.0 Documentation, Release 1.0

Note that you do not need to worry about the detrimental performance effects of calling update() (page 10)
too often; the class ensures that repeated calls are ignored until max_wait seconds have elapsed since the last
update.

Alternatively, if you wish to update according to, say, the number of files to process you could use something
like the following example (which also demonstrates temporarily hiding the progress meter in order to show the
current filename):

import os
import io
from lars import iis, csv, progress
from pathlib import Path

files = list(Path('.').iterdir())
with progress.ProgressMeter(total=len(files),

style=progress.BarStyle) as meter:
for file_num, file_name in enumerate(files):

meter.hide()
print "Processing %s" % file_name
meter.show()
with file_name.open('rb') as infile, \

file_name.with_suffix('.csv').open('wb') as outfile, \
iis.IISSource(infile) as source, \
csv.CSVTarget(outfile) as target:

for row in source:
target.write(row)

meter.update(file_num)

3.8 lars.dns - DNS Resolution

This module provides a couple of trivial DNS resolution functions, enhanced with LRU caches. Most users should
never need to access these functions directly. Instead, use the address and hostname properties of relevant
objects.

3.8.1 Functions

lars.dns.from_address(address)
Reverse resolve an address to a hostname.

Given a string containing an IPv4 or IPv6 address, this functions returns a hostname associated with the
address, using an LRU cache to speed up repeat queries. If the address does not reverse, the function returns
the original address.

Parameters address (str15) – The address to resolve to a hostname

Returns The resolved hostname

lars.dns.to_address(hostname, family=<AddressFamily.AF_UNSPEC: 0>, sock-
type=<SocketKind.SOCK_STREAM: 1>)

Resolve a hostname to an address, preferring IPv4 addresses.

Given a string containing a DNS hostname, this function resolves the hostname to an address, using an LRU
cache to speed up repeat queries. The function prefers IPv4 addresses, but will return IPv6 addresses if no
IPv4 addresses are present in the result from getaddrinfo. If the hostname does not resolve, the function
returns None rather than raise an exception (this is preferable as it provides a negative lookup cache).

Parameters hostname (str16) – The hostname to resolve to an address

Returns The resolved address
15 https://docs.python.org/3.5/library/stdtypes.html#str
16 https://docs.python.org/3.5/library/stdtypes.html#str

3.8. lars.dns - DNS Resolution 11

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str

Lars 1.0 Documentation, Release 1.0

3.9 lars.cache - Cache Decorators

This module provides a backport of the Python 3.3 LRU caching decorator. Users should never need to access
this module directly; its contents are solely present to ensure DNS lookups can be cached under a Python 2.7
environment.

Source adapted from Raymond Hettinger’s recipe17 licensed under the MIT license18.

3.9.1 Functions

lars.cache.lru_cache(maxsize=100, typed=False)
Least-recently-used cache decorator.

If maxsize is set to None, the LRU features are disabled and the cache can grow without bound.

If typed is True, arguments of different types will be cached separately. For example, f(3.0) and f(3) will be
treated as distinct calls with distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (hits, misses, maxsize, currsize) with f.cache_info(). Clear the cache
and statistics with f.cache_clear(). Access the underlying function with f.__wrapped__.

3.10 lars.exc - Base Exceptions

Defines base exception and warnings types for the package.

3.10.1 Exceptions

exception lars.exc.LarsError
Base class for all errors generated by the lars package. This exists purely for ease of filtering / catching all
such errors.

exception lars.exc.LarsWarning
Base class for all warnings generated by the lars package. This exists purely for ease of filtering / catching
all such warnings.

17 http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
18 http://opensource.org/licenses/MIT

12 Chapter 3. API Reference

http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
http://opensource.org/licenses/MIT

CHAPTER 4

Change log

4.1 Release 1.0 (2017-01-04)

• Permit NULL values in first row when creating SQL tables (but warn as this is not encouraged)

• Permit sources and targets to be used outside of context handlers (makes experimentation in the REPL a bit
nicer)

• Don’t warn when request is NULL in Apache log sources (in certain configurations this is common when
stringent timeouts are set)

• Fixed incorrect generation of Oracle multi-row INSERT statements

• Fixed operation of SQL target when row doesn’t cover complete set of target table rows

4.2 Release 0.3 (2014-09-07)

• Implemented Python 3 compatibility (specifically 3.2 or above) and added debian packaging for Python 3
and docs

4.3 Release 0.2 (2013-07-28)

• Added ISP and organisation lookups to geoip module

• Added multi-row insertion support to the sql module

• Added Oracle specific target in the sql module

• Fixed the setup.py script (missing MANIFEST.in meant utils.py was excluded which setup.py relies upon)

• Fixed test coverage for the progress module

4.4 Release 0.1 (2013-06-09)

• Initial release

13

Lars 1.0 Documentation, Release 1.0

14 Chapter 4. Change log

CHAPTER 5

License

Copyright © 2013-2017, Dave Jones19

Copyright © 2013, Mime Consulting Ltd.20

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.1 DateTime, Date, and Time documentation license

The documentation for the DateTime, Date, and Time classes in this module are derived from the documenta-
tion sources for the datetime, date, and time classes in Python 2.7.4 and thus are subject to the following copyright
and license:

Copyright (c) 1990-2013, Python Software Foundation

5.1.1 PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.7.4 software in source or binary form
and its associated documentation.

19 dave@waveform.org.uk
20 info@mimeconsulting.co.uk

15

mailto:dave@waveform.org.uk
mailto:info@mimeconsulting.co.uk

Lars 1.0 Documentation, Release 1.0

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2013 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.4 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.4.

4. PSF is making Python 2.7.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.7.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.7.4, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

5.2 _strptime license

The strptime and timezone modules are derived from the _strptime and datetime modules in Python 3.2
respectively, and therefore are subject to the following license:

Copyright (c) 1990-2013, Python Software Foundation

5.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 3.2.3 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 3.2.3 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2012 Python Software
Foundation; All Rights Reserved” are retained in Python 3.2.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.2.3 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 3.2.3.

4. PSF is making Python 3.2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
3.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

16 Chapter 5. License

Lars 1.0 Documentation, Release 1.0

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2.3 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2.3, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 3.2.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

5.3 IPNetwork & IPAddress documentation license

The documentation for the IPv4Address, IPv4Network, IPv6Address, and IPv6Network classes in
lars are derived from the ipaddress21 documentation sources which are subject to the following copyright and are
licensed to the PSF under the contributor agreement which makes them subject to the PSF 3.2.3 license from the
section above:

Copyright (c) 2007 Google Inc.

21 http://code.google.com/p/ipaddr-py/

5.3. IPNetwork & IPAddress documentation license 17

http://code.google.com/p/ipaddr-py/

Lars 1.0 Documentation, Release 1.0

18 Chapter 5. License

Python Module Index

l
lars, 3
lars.cache, 12
lars.csv, 7
lars.dns, 11
lars.exc, 12
lars.progress, 9

19

Lars 1.0 Documentation, Release 1.0

20 Python Module Index

Index

B
BarStyle (class in lars.progress), 10

C
close() (lars.csv.CSVTarget method), 8
CSV_DIALECT (class in lars.csv), 8
CSVTarget (class in lars.csv), 7

E
EllipsisStyle (class in lars.progress), 10

F
from_address() (in module lars.dns), 11

H
HashStyle (class in lars.progress), 10
hide() (lars.progress.ProgressMeter method), 10

L
lars (module), 3
lars.cache (module), 12
lars.csv (module), 7
lars.dns (module), 11
lars.exc (module), 12
lars.progress (module), 9
LarsError, 12
LarsWarning, 12
lru_cache() (in module lars.cache), 12

P
PercentageStyle (class in lars.progress), 10
ProgressMeter (class in lars.progress), 9

Q
QUOTE_ALL (in module lars.csv), 9
QUOTE_MINIMAL (in module lars.csv), 8
QUOTE_NONE (in module lars.csv), 8
QUOTE_NONNUMERIC (in module lars.csv), 9

S
show() (lars.progress.ProgressMeter method), 10
SpinnerStyle (class in lars.progress), 10

T
to_address() (in module lars.dns), 11
TSV_DIALECT (class in lars.csv), 8

U
update() (lars.progress.ProgressMeter method), 10

W
write() (lars.csv.CSVTarget method), 8

21

	Install
	Pre-requisites
	Ubuntu Linux
	Other Platforms

	Introduction
	Filtering rows
	Manipulating row content

	API Reference
	lars.apache - Reading Apache Logs
	lars.iis - Reading IIS Logs
	lars.csv - Writing CSV Files
	lars.sql - Direct Database Output
	lars.geoip - GeoIP Database Access
	lars.datatypes - Web Log Datatypes
	lars.progress - Rendering Progress
	lars.dns - DNS Resolution
	lars.cache - Cache Decorators
	lars.exc - Base Exceptions

	Change log
	Release 1.0 (2017-01-04)
	Release 0.3 (2014-09-07)
	Release 0.2 (2013-07-28)
	Release 0.1 (2013-06-09)

	License
	DateTime, Date, and Time documentation license
	_strptime license
	IPNetwork & IPAddress documentation license

	Python Module Index

