

lars

lars is a small Python framework for working with httpd logs (from a variety
of common servers like Apache, nginx, and IIS). The primary purpose is to
provide a set of conversions to ease loading such logs into relational
databases, but numerous other possibilities can be realized with a little
imagination. Which is to say: lars is not a web log analyzer. However, it
is a toolkit that makes it quite easy to construct your own analyzer.

Links

	The code is licensed under the MIT license

	The source code can be obtained from GitHub, which also hosts the bug
tracker

	The documentation (which includes installation instructions and several
examples) can be read on ReadTheDocs

	The build status can be observed on Travis CI

Table of Contents

	1. Install
	1.1. Pre-requisites

	1.2. Ubuntu Linux

	1.3. Other Platforms

	2. Introduction
	2.1. Filtering rows

	2.2. Manipulating row content

	3. API Reference
	3.1. lars.apache - Reading Apache Logs

	3.2. lars.iis - Reading IIS Logs

	3.3. lars.csv - Writing CSV Files

	3.4. lars.sql - Direct Database Output

	3.5. lars.geoip - GeoIP Database Access

	3.6. lars.datatypes - Web Log Datatypes

	3.7. lars.progress - Rendering Progress

	3.8. lars.dns - DNS Resolution

	3.9. lars.cache - Cache Decorators

	3.10. lars.exc - Base Exceptions

	4. Change log
	4.1. Release 1.0 (2017-01-04)

	4.2. Release 0.3 (2014-09-07)

	4.3. Release 0.2 (2013-07-28)

	4.4. Release 0.1 (2013-06-09)

	5. License
	5.1. DateTime, Date, and Time documentation license

	5.2. _strptime license

	5.3. IPNetwork & IPAddress documentation license

Indices and tables

	Index

	Module Index

	Search Page

1. Install

lars is distributed in several formats. The following sections detail
installation on a variety of platforms.

1.1. Pre-requisites

Where possible, installation methods will automatically handle all mandatory
pre-requisites. However, if your particular installation method does not handle
dependency installation, then you will need to install the following Python
packages manually:

	pygeoip - The pure Python API for MaxMind GeoIP databases

	ipaddress - Google’s IPv4 and IPv6 address handling library. This is
included as standard in Python 3.3 and above.

1.2. Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the Waveform PPA as follows
(this also ensures you are kept up to date as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-lars

1.3. Other Platforms

If your platform is not covered by one of the sections above, lars is
available from PyPI and can therefore be installed with the Python setuptools
easy_install tool:

$ easy_install lars

Or the (now deprecated) distribute pip tool:

$ pip install lars

If you do not have either of these tools available, please install the Python
setuptools package first.

2. Introduction

A typical lars script opens some log source, typically a file, and uses the
source and target wrappers provided by lars to convert the log entries into
some other format (potentially filtering and/or modifying the entries along the
way). A trivial script to convert IIS W3C style log entries into a CSV file is
shown below:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)

Going through this section by section we can see the following:

	The first couple of lines import the necessary modules that we’ll need; the
standard Python io module for opening files, and the iis and
csv modules from lars for converting the data.

	Using io.open() we open the input file (with mode 'r' for reading)
and the output file (with mode 'wb' for creating a new file and writing
(binary mode) to it)

	We wrap infile (the input file) with IISSource to
parse the input file, and outfile (the output file) with
CSVTarget to format the output file.

	Finally, we use a simple loop to iterate over the rows in the source file,
and the write() method to write them to the
target.

This is the basic structure of most lars scripts. Most extra lines for
filtering and manipulating rows appear within the loop at the end of the file,
although sometimes extra module configuration lines are required at the top.

2.1. Filtering rows

The row object declared in the loop has attributes named after the columns of
the source (with characters that cannot appear in Python identifiers replaced
with underscores). To see the structure of a row you can simply print one and
then terminate the loop:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 print(row)
 break

Given the following input file (long lines indented for readability):

#Software: Microsoft Internet Information Services 6.0
#Version: 1.0
#Date: 2002-05-24 20:18:01
#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem
 cs-uri-query sc-status sc-bytes cs-bytes time-taken cs(User-Agent)
 cs(Referrer)
2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm -
 200 7930 248 31
 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server)
 http://64.224.24.114/

This will produce this output on the command line:

Row(date=Date(2002, 5, 24), time=Time(20, 18, 1),
 c_ip=IPv4Address(u'172.224.24.114'), cs_username=None,
 s_ip=IPv4Address(u'206.73.118.24'), s_port=80, cs_method=u'GET',
 cs_uri_stem=Url(scheme='', netloc='', path=u'/Default.htm', params='',
 query_str='', fragment=''), cs_uri_query=None, sc_status=200,
 sc_bytes=7930, cs_bytes=248, time_taken=31.0,
 cs_User_Agent=u'Mozilla/4.0 (compatible; MSIE 5.01; Windows 2000
 Server)', cs_Referrer=Url(scheme=u'http', netloc=u'64.224.24.114',
 path=u'/', params='', query_str='', fragment=''))

From this one can see that field names like c-ip have been converted into
c_ip (- is an illegal character in Python identifiers). Furthermore it
is apparent that instead of simple strings being extracted, the data has been
converted into a variety of appropriate datatypes
(Date for the date field,
Url for the cs-uri-stem field, and so on). This
significantly aids in filtering rows based upon sub-attributes of the extracted
data.

For example, to filter on the year of the date:

if row.date.year == 2002:
 target.write(row)

Alternatively, you could filter on whether or not the client IP belongs in a
particular network:

if row.c_ip in datatypes.network('172.0.0.0/8'):
 target.write(row)

Or use Python’s string methods to filter on any string:

if row.cs_User_Agent.startswith('Mozilla/'):
 target.write(row)

Or any combination of the above:

if row.date.year == 2002 and 'MSIE' in row.cs_User_Agent:
 target.write(row)

2.2. Manipulating row content

If you wish to modify the output structure,the simplest method is to declare
the row structure you want at the top of the file (using the
row() function) and then construct rows with the new
structure in the loop (using the result of the function):

import io
from lars import datatypes, iis, csv

NewRow = datatypes.row('date', 'time', 'client', 'url')

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 new_row = NewRow(row.date, row.time, row.c_ip, row.cs_uri_stem)
 target.write(new_row)

There is no need to convert column data back to strings for output; all
datatypes produced by lars source adapters have built-in string conversions
which all target adapters know to use.

3. API Reference

The framework is designed in a modular fashion with a separate module for each
log input format, each data output format, a few auxilliary modules for the
datatypes exposed by the framework and their functionality. Where possible,
standards dictating formats are linked in the API reference.

Each module comes with documentation including examples of usage. The best way
to learn the framework is to peruse the API reference and try out the examples,
modifying them to suit your purposes.

	3.1. lars.apache - Reading Apache Logs

	3.2. lars.iis - Reading IIS Logs

	3.3. lars.csv - Writing CSV Files
	3.3.1. Classes

	3.3.2. Data

	3.3.3. Examples

	3.4. lars.sql - Direct Database Output

	3.5. lars.geoip - GeoIP Database Access

	3.6. lars.datatypes - Web Log Datatypes

	3.7. lars.progress - Rendering Progress
	3.7.1. Classes

	3.7.2. Examples

	3.8. lars.dns - DNS Resolution
	3.8.1. Functions

	3.9. lars.cache - Cache Decorators
	3.9.1. Functions

	3.10. lars.exc - Base Exceptions
	3.10.1. Exceptions

3.1. lars.apache - Reading Apache Logs

3.2. lars.iis - Reading IIS Logs

3.3. lars.csv - Writing CSV Files

This module provides a target wrapper for CSV (Comma Separated Values)
formatted text files, which are typically used as a generic source format for
bulk loading databases.

The CSVTarget class is the major element that this module provides; it
is a standard target class (a context manager with a
write() method that accepts row tuples).

3.3.1. Classes

	
class lars.csv.CSVTarget(fileobj, header=False, dialect=CSV_DIALECT, encoding='utf-8', **kwargs)

	Wraps a stream to format rows as CSV (Comma Separated Values).

This wrapper provides a simple write() method which can be used to
format row tuples as comma separated values in a variety of common
dialects. The dialect defaults to CSV_DIALECT which produces a
typical CSV file compatible with the vast majority of products.

If you desire a different output format you can either specify a different
value for the dialect parameter, or if you only wish to use a minimal
modification of the dialect you can override its attributes with keyword
arguments. For example:

CSVTarget(outfile, dialect=CSV_DIALECT, lineterminator='\n')

The encoding parameter controls the character set used in the output.
This defaults to UTF-8 which is a sensible default for most modern systems,
but is a multi-byte encoding which some legacy systems (notably mainframes)
may have troubles with. In this case you can either select a single byte
encoding like ISO-8859-1 or even EBCDIC. See Python standard encodings
for a full list of supported encodings.

Warning

The file that you wrap with CSVTarget must be opened in
binary mode ('wb') partly because the dialect dictates the line
terminator that is used, and partly because the class handles its own
character encoding.

	
close()

	Closes the CSV output. Further calls to write() are not permitted
after calling this method.

	
write(row)

	Write the specified row (a tuple of values) to the wrapped output.
All provided rows must have the same number of elements. There is no
need to convert elements of the tuple to str; this will be
handled implicitly.

	
class lars.csv.CSV_DIALECT

	This is the default dialect used by the CSVTarget class which has
the following attributes:

	Attribute

	Value

	delimiter

	',' (comma)

	quotechar

	'"' (double-quote)

	quoting

	QUOTE_MINIMAL

	lineterminator

	'\r\n' (DOS line breaks)

	doublequote

	True

	escapechar

	None

This dialect is compatible with Microsoft Excel and the vast majority of
of other products which accept CSV as an input format. However, please note
that some UNIX based database products require UNIX style line endings
('\n') in which case you may wish to override the lineterminator
attribute (see CSVTarget for more information).

	
class lars.csv.TSV_DIALECT

	This is a dialect which produces tab-delimited files, another common data
exchange format also supported by Microsoft Excel and numerous database
products. This dialect has the following properties:

	Attribute

	Value

	delimiter

	'\t' (tab)

	quotechar

	'"' (double-quote)

	quoting

	QUOTE_MINIMAL

	lineterminator

	'\r\n' (DOS line breaks)

	doublequote

	True

	escapechar

	None

3.3.2. Data

	
lars.csv.QUOTE_NONE

	This value indicates that no values should ever be quoted, even if they
contain the delimiter character. In this case, any delimiter characters
appearing the data will be preceded by the dialect’s escapechar which
should be set to an appropriate value. If escapechar is not set (None)
an exception will be raised if any character that require quoting are
encountered.

	
lars.csv.QUOTE_MINIMAL

	This is the default quoting mode. In this mode the writer will only quote
those values that contain the delimiter or quotechar characters, or
any of the characters in lineterminator.

	
lars.csv.QUOTE_NONNUMERIC

	This value tells the writer to quote all numeric (int and float) values.

	
lars.csv.QUOTE_ALL

	This value simply tells the writer to quote all values written.

3.3.3. Examples

A typical example of working with the class is shown below:

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
 with io.open('apache.csv', 'wb') as outfile:
 with apache.ApacheSource(infile) as source:
 with csv.CSVTarget(outfile, lineterminator='\n') as target:
 for row in source:
 target.write(row)

3.4. lars.sql - Direct Database Output

3.5. lars.geoip - GeoIP Database Access

3.6. lars.datatypes - Web Log Datatypes

3.7. lars.progress - Rendering Progress

This module provides a wrapper that outputs simple progress meters to the
command line based on source file positions, or an arbitrary counter. The
ProgressMeter class is the major element that this module provides.

3.7.1. Classes

	
class lars.progress.ProgressMeter(fileobj=None, value=0, total=None, max_wait=0.1, stream=sys.stderr, mode='w', style=BarStyle, hide_on_finish=True)

	This class provides a simple means of rendering a progress meter at the
command line. It can be driven either with a file object (in which case the
current position of the file is used) or with an arbitrary value (which
your code must provide). In the case of a file-object, the file must be
seekable (so that the class can determine the overall length of the file).
If fileobj is not specified, then total must be specified.

The class is intended to be used as a context manager. Upon entry it will
render an initial progress meter, and will update it at reasonable
intervals (dictated by the max_wait parameter) in response to calls to the
update() method. When you leave the context, the progress meter will
be automatically erased if hide_on_finish is True (which it is by
default).

Within the context, the hide() and show() methods can be used
to temporarily hide and show the progress meter (in order to display some
status text, for example).

	Parameters

	
	fileobj (file) – A file-like object from which to determine progress

	value (int) – An arbitrary value from which to determine progress

	total (int) – In the case that value is set, this must be set to the maximum value
that value will take

	max_wait (float) – The minimum length of time that must elapse before a screen update is
permitted

	stream (file) – The stream object that output should be written to, defaults to stderr

	style – A reference to a class which will be used to render the progress meter,
defaults to BarStyle

	hide_on_finish (bool) – If True (the default), the progress meter will be erased when the
context exits

	
hide()

	Hide the progress bar from the console (or whatever the output stream
is connected to).

	
show()

	Show the progress bar on the console (or whatever the output stream
is connected to).

	
update(value=None)

	Update the progress bar to position value (which must be less than
the total value passed to the constructor).

	
class lars.progress.SpinnerStyle(meter)

	A ProgressMeter style that renders a simple spinning line.

	
class lars.progress.PercentageStyle(meter)

	A ProgressMeter style that renders a simple percentage counter.

	
class lars.progress.EllipsisStyle(meter)

	A ProgressMeter style that renders an looping series of dots.

	
class lars.progress.BarStyle(meter)

	A ProgressMeter style that renders a full progress bar and
percentage.

	
class lars.progress.HashStyle(meter)

	A ProgressMeter style for those that remember FTP’s hash
command!

3.7.2. Examples

The most basic usage of this class is as follows:

import io
from lars import iis, csv, progress

with io.open('logs\iis.txt', 'rb') as infile, \
 io.open('iis.csv', 'wb') as outfile, \
 progress.ProgressMeter(infile) as meter, \
 iis.IISSource(infile) as source, \
 csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)
 meter.update()

Note that you do not need to worry about the detrimental performance effects of
calling update() too often; the class ensures that
repeated calls are ignored until max_wait seconds have
elapsed since the last update.

Alternatively, if you wish to update according to, say, the number of files to
process you could use something like the following example (which also
demonstrates temporarily hiding the progress meter in order to show the current
filename):

import os
import io
from lars import iis, csv, progress
from pathlib import Path

files = list(Path('.').iterdir())
with progress.ProgressMeter(total=len(files),
 style=progress.BarStyle) as meter:
 for file_num, file_name in enumerate(files):
 meter.hide()
 print "Processing %s" % file_name
 meter.show()
 with file_name.open('rb') as infile, \
 file_name.with_suffix('.csv').open('wb') as outfile, \
 iis.IISSource(infile) as source, \
 csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)
 meter.update(file_num)

3.8. lars.dns - DNS Resolution

This module provides a couple of trivial DNS resolution functions, enhanced
with LRU caches. Most users should never need to access these functions
directly. Instead, use the address and
hostname properties of relevant objects.

3.8.1. Functions

	
lars.dns.from_address(address)

	Reverse resolve an address to a hostname.

Given a string containing an IPv4 or IPv6 address, this functions returns
a hostname associated with the address, using an LRU cache to speed up
repeat queries. If the address does not reverse, the function returns
the original address.

	Parameters

	address (str) – The address to resolve to a hostname

	Returns

	The resolved hostname

	
lars.dns.to_address(hostname, family=<AddressFamily.AF_UNSPEC: 0>, socktype=<SocketKind.SOCK_STREAM: 1>)

	Resolve a hostname to an address, preferring IPv4 addresses.

Given a string containing a DNS hostname, this function resolves the
hostname to an address, using an LRU cache to speed up repeat queries. The
function prefers IPv4 addresses, but will return IPv6 addresses if no IPv4
addresses are present in the result from getaddrinfo. If the hostname does
not resolve, the function returns None rather than raise an exception (this
is preferable as it provides a negative lookup cache).

	Parameters

	hostname (str) – The hostname to resolve to an address

	Returns

	The resolved address

3.9. lars.cache - Cache Decorators

This module provides a backport of the Python 3.3 LRU caching decorator. Users
should never need to access this module directly; its contents are solely
present to ensure DNS lookups can be cached under a Python 2.7 environment.

Source adapted from Raymond Hettinger’s recipe licensed under the MIT
license.

3.9.1. Functions

	
lars.cache.lru_cache(maxsize=100, typed=False)

	Least-recently-used cache decorator.

If maxsize is set to None, the LRU features are disabled and the cache
can grow without bound.

If typed is True, arguments of different types will be cached separately.
For example, f(3.0) and f(3) will be treated as distinct calls with
distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (hits, misses, maxsize, currsize)
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.

3.10. lars.exc - Base Exceptions

Defines base exception and warnings types for the package.

3.10.1. Exceptions

	
exception lars.exc.LarsError

	Base class for all errors generated by the lars package. This exists purely
for ease of filtering / catching all such errors.

	
exception lars.exc.LarsWarning

	Base class for all warnings generated by the lars package. This exists
purely for ease of filtering / catching all such warnings.

4. Change log

4.1. Release 1.0 (2017-01-04)

	Permit NULL values in first row when creating SQL tables (but warn as this is
not encouraged)

	Permit sources and targets to be used outside of context handlers (makes
experimentation in the REPL a bit nicer)

	Don’t warn when request is NULL in Apache log sources (in certain
configurations this is common when stringent timeouts are set)

	Fixed incorrect generation of Oracle multi-row INSERT statements

	Fixed operation of SQL target when row doesn’t cover complete set of target
table rows

4.2. Release 0.3 (2014-09-07)

	Implemented Python 3 compatibility (specifically 3.2 or above) and added
debian packaging for Python 3 and docs

4.3. Release 0.2 (2013-07-28)

	Added ISP and organisation lookups to geoip module

	Added multi-row insertion support to the sql module

	Added Oracle specific target in the sql module

	Fixed the setup.py script (missing MANIFEST.in meant utils.py was excluded
which setup.py relies upon)

	Fixed test coverage for the progress module

4.4. Release 0.1 (2013-06-09)

	Initial release

5. License

Copyright © 2013-2017, Dave Jones

Copyright © 2013, Mime Consulting Ltd.

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5.1. DateTime, Date, and Time documentation license

The documentation for the DateTime,
Date, and Time classes
in this module are derived from the documentation sources for the datetime,
date, and time classes in Python 2.7.4 and thus are subject to the following
copyright and license:

Copyright (c) 1990-2013, Python Software Foundation

5.1.1. PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

	This LICENSE AGREEMENT is between the Python Software Foundation
(“PSF”), and the Individual or Organization (“Licensee”) accessing
and otherwise using Python 2.7.4 software in source or binary form and its
associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to
reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 2.7.4 alone or in
any derivative version, provided, however, that PSF’s License Agreement
and PSF’s notice of copyright, i.e., “Copyright © 2001-2013 Python
Software Foundation; All Rights Reserved” are retained in Python 2.7.4
alone or in any derivative version prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.4 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 2.7.4.

	PSF is making Python 2.7.4 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 2.7.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.4
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.4, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

	By copying, installing or otherwise using Python 2.7.4, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

5.2. _strptime license

The strptime and timezone modules are derived
from the _strptime and datetime modules in Python 3.2 respectively, and
therefore are subject to the following license:

Copyright (c) 1990-2013, Python Software Foundation

5.2.1. PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

	This LICENSE AGREEMENT is between the Python Software Foundation
(“PSF”), and the Individual or Organization (“Licensee”) accessing
and otherwise using Python 3.2.3 software in source or binary form and its
associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 3.2.3 alone or in
any derivative version, provided, however, that PSF’s License Agreement
and PSF’s notice of copyright, i.e., “Copyright © 2001-2012 Python
Software Foundation; All Rights Reserved” are retained in Python 3.2.3
alone or in any derivative version prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.2.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 3.2.3.

	PSF is making Python 3.2.3 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 3.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2.3, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

	By copying, installing or otherwise using Python 3.2.3, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

5.3. IPNetwork & IPAddress documentation license

The documentation for the IPv4Address,
IPv4Network,
IPv6Address, and
IPv6Network classes in lars are derived from the
ipaddress documentation sources which are subject to the following copyright
and are licensed to the PSF under the contributor agreement which makes them
subject to the PSF 3.2.3 license from the section above:

Copyright (c) 2007 Google Inc.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lars	

 	
 	
 lars.cache	

 	
 	
 lars.csv	

 	
 	
 lars.dns	

 	
 	
 lars.exc	

 	
 	
 lars.progress	

Index

 B
 | C
 | E
 | F
 | H
 | L
 | P
 | Q
 | S
 | T
 | U
 | W

B

 	
 	BarStyle (class in lars.progress)

C

 	
 	close() (lars.csv.CSVTarget method)

 	
 	CSV_DIALECT (class in lars.csv)

 	CSVTarget (class in lars.csv)

E

 	
 	EllipsisStyle (class in lars.progress)

F

 	
 	from_address() (in module lars.dns)

H

 	
 	HashStyle (class in lars.progress)

 	
 	hide() (lars.progress.ProgressMeter method)

L

 	
 	lars (module)

 	lars.cache (module)

 	lars.csv (module)

 	lars.dns (module)

 	
 	lars.exc (module)

 	lars.progress (module)

 	LarsError

 	LarsWarning

 	lru_cache() (in module lars.cache)

P

 	
 	PercentageStyle (class in lars.progress)

 	
 	ProgressMeter (class in lars.progress)

Q

 	
 	QUOTE_ALL (in module lars.csv)

 	QUOTE_MINIMAL (in module lars.csv)

 	
 	QUOTE_NONE (in module lars.csv)

 	QUOTE_NONNUMERIC (in module lars.csv)

S

 	
 	show() (lars.progress.ProgressMeter method)

 	
 	SpinnerStyle (class in lars.progress)

T

 	
 	to_address() (in module lars.dns)

 	
 	TSV_DIALECT (class in lars.csv)

U

 	
 	update() (lars.progress.ProgressMeter method)

W

 	
 	write() (lars.csv.CSVTarget method)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 lars

 		
 Install

 		
 Pre-requisites

 		
 Ubuntu Linux

 		
 Other Platforms

 		
 Introduction

 		
 Filtering rows

 		
 Manipulating row content

 		
 API Reference

 		
 lars.apache - Reading Apache Logs

 		
 lars.iis - Reading IIS Logs

 		
 lars.csv - Writing CSV Files

 		
 Classes

 		
 Data

 		
 Examples

 		
 lars.sql - Direct Database Output

 		
 lars.geoip - GeoIP Database Access

 		
 lars.datatypes - Web Log Datatypes

 		
 lars.progress - Rendering Progress

 		
 Classes

 		
 Examples

 		
 lars.dns - DNS Resolution

 		
 Functions

 		
 lars.cache - Cache Decorators

 		
 Functions

 		
 lars.exc - Base Exceptions

 		
 Exceptions

 		
 Change log

 		
 Release 1.0 (2017-01-04)

 		
 Release 0.3 (2014-09-07)

 		
 Release 0.2 (2013-07-28)

 		
 Release 0.1 (2013-06-09)

 		
 License

 		
 DateTime, Date, and Time documentation license

 		
 PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

 		
 _strptime license

 		
 PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

 		
 IPNetwork & IPAddress documentation license

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

